Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene which protects against lung cancer identified

03.12.2008
A study led by researchers at The University of Nottingham has identified a gene that protects the body from lung cancer.

The research, published in the journal Proceedings of the National Academy of Sciences, USA and funded by a £72,000 grant from the British Lung Foundation, has found that the tumour suppressor gene, LIMD1, is responsible for protecting the body from developing lung cancer — paving the way for possible new treatments and early screening techniques.

Lead researcher Dr Tyson Sharp and his University of Nottingham team, together with US collaborator Dr Greg Longmore, set out to examine if loss of the LIMD1 gene correlated with lung cancer development.

The University of Nottingham team examined lung cancer tissue from patients with the disease and compared it to healthy lung tissue. They found that the LIMD1 gene was missing in the majority of lung cancer samples, indicating that the presence of the LIMD1 gene protects the body against lung cancer.

Dr Greg Longmore’s team in the USA supported these findings, using a mouse without the LMID1 gene which developed lung cancer.

Dr Sharp said: “The LIMD1 gene studied in this research is located on part of chromosome 3, called 3p21.

“Chromosome 3p21 is often deleted very early on in the development of lung cancer due to the toxic chemicals in cigarettes, which implies that inactivation of LIMD1 could be a particularly important event in early stages of lung cancer development.

“We are now going to extend these finding by developing LIMD1 as a novel prognostic tool for detection of early stage lung cancer.”

Lung cancer is the UK’s biggest cancer killer, claiming around 33,600 lives a year. Ninety per cent of cases are caused by smoking. At present lung cancer is often detected late, meaning that 80 per cent of patients die within a year of being diagnosed.

Dame Helena Shovelton, Chief Executive of the British Lung Foundation said: “This is very exciting research which could lead to the development of early screening techniques and treatments for lung cancer. We are very proud to have made this breakthrough possible”.

Emma Thorne | alfa
Further information:
http://www.nottingham.ac.uk
http://communications.nottingham.ac.uk/News/Article/Gene-which-protects-against-lung-cancer-identified.html

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>