Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Gene which protects against lung cancer identified

A study led by researchers at The University of Nottingham has identified a gene that protects the body from lung cancer.

The research, published in the journal Proceedings of the National Academy of Sciences, USA and funded by a £72,000 grant from the British Lung Foundation, has found that the tumour suppressor gene, LIMD1, is responsible for protecting the body from developing lung cancer — paving the way for possible new treatments and early screening techniques.

Lead researcher Dr Tyson Sharp and his University of Nottingham team, together with US collaborator Dr Greg Longmore, set out to examine if loss of the LIMD1 gene correlated with lung cancer development.

The University of Nottingham team examined lung cancer tissue from patients with the disease and compared it to healthy lung tissue. They found that the LIMD1 gene was missing in the majority of lung cancer samples, indicating that the presence of the LIMD1 gene protects the body against lung cancer.

Dr Greg Longmore’s team in the USA supported these findings, using a mouse without the LMID1 gene which developed lung cancer.

Dr Sharp said: “The LIMD1 gene studied in this research is located on part of chromosome 3, called 3p21.

“Chromosome 3p21 is often deleted very early on in the development of lung cancer due to the toxic chemicals in cigarettes, which implies that inactivation of LIMD1 could be a particularly important event in early stages of lung cancer development.

“We are now going to extend these finding by developing LIMD1 as a novel prognostic tool for detection of early stage lung cancer.”

Lung cancer is the UK’s biggest cancer killer, claiming around 33,600 lives a year. Ninety per cent of cases are caused by smoking. At present lung cancer is often detected late, meaning that 80 per cent of patients die within a year of being diagnosed.

Dame Helena Shovelton, Chief Executive of the British Lung Foundation said: “This is very exciting research which could lead to the development of early screening techniques and treatments for lung cancer. We are very proud to have made this breakthrough possible”.

Emma Thorne | alfa
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Steering a fusion plasma toward stability

28.10.2016 | Power and Electrical Engineering

Bioluminescent sensor causes brain cells to glow in the dark

28.10.2016 | Life Sciences

Activation of 2 genes linked to development of atherosclerosis

28.10.2016 | Life Sciences

More VideoLinks >>>