Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene which protects against lung cancer identified

03.12.2008
A study led by researchers at The University of Nottingham has identified a gene that protects the body from lung cancer.

The research, published in the journal Proceedings of the National Academy of Sciences, USA and funded by a £72,000 grant from the British Lung Foundation, has found that the tumour suppressor gene, LIMD1, is responsible for protecting the body from developing lung cancer — paving the way for possible new treatments and early screening techniques.

Lead researcher Dr Tyson Sharp and his University of Nottingham team, together with US collaborator Dr Greg Longmore, set out to examine if loss of the LIMD1 gene correlated with lung cancer development.

The University of Nottingham team examined lung cancer tissue from patients with the disease and compared it to healthy lung tissue. They found that the LIMD1 gene was missing in the majority of lung cancer samples, indicating that the presence of the LIMD1 gene protects the body against lung cancer.

Dr Greg Longmore’s team in the USA supported these findings, using a mouse without the LMID1 gene which developed lung cancer.

Dr Sharp said: “The LIMD1 gene studied in this research is located on part of chromosome 3, called 3p21.

“Chromosome 3p21 is often deleted very early on in the development of lung cancer due to the toxic chemicals in cigarettes, which implies that inactivation of LIMD1 could be a particularly important event in early stages of lung cancer development.

“We are now going to extend these finding by developing LIMD1 as a novel prognostic tool for detection of early stage lung cancer.”

Lung cancer is the UK’s biggest cancer killer, claiming around 33,600 lives a year. Ninety per cent of cases are caused by smoking. At present lung cancer is often detected late, meaning that 80 per cent of patients die within a year of being diagnosed.

Dame Helena Shovelton, Chief Executive of the British Lung Foundation said: “This is very exciting research which could lead to the development of early screening techniques and treatments for lung cancer. We are very proud to have made this breakthrough possible”.

Emma Thorne | alfa
Further information:
http://www.nottingham.ac.uk
http://communications.nottingham.ac.uk/News/Article/Gene-which-protects-against-lung-cancer-identified.html

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>