Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gallo Center study in mice links cocaine use to new brain structures

26.08.2013
UCSF scientists identify possible mechanism for drug-seeking behavior in humans

Mice given cocaine showed rapid growth in new brain structures associated with learning and memory, according to a research team from the Ernest Gallo Clinic and Research Center at UC San Francisco. The findings suggest a way in which drug use may lead to drug-seeking behavior that fosters continued drug use, according to the scientists.

The researchers used a microscope that allowed them to peer directly into nerve cells within the brains of living mice, and within two hours of giving a drug they found significant increases in the density of dendritic spines – structures that bear synapses required for signaling – in the animals' frontal cortex. In contrast, mice given saline solution showed no such increase.

The researchers also found a relationship between the growth of new dendritic spines and drug-associated learning. Specifically, mice that grew the most new spines were those that developed the strongest preference for being in the enclosure where they received cocaine rather than in the enclosure where they received saline. The team published its findings online in Nature Neuroscience on August 25, 2013.

"This gives us a possible mechanism for how drug use fuels further drug-seeking behavior," said principal investigator Linda Wilbrecht, PhD, a Gallo investigator now at UC Berkeley, but who led the research while she was on the UCSF faculty.

"It's been observed that long-term drug users show decreased function in the frontal cortex in connection with mundane cues or tasks, and increased function in response to drug-related activity or information," Wilbrecht said. "This research suggests how the brains of drug users might shift toward those drug-related associations."

In all living brains there is a baseline level of creation of new spines in response to, or in anticipation of, day-to-day learning, Wilbrecht said. By enhancing this growth, cocaine might be a super-learning stimulus that reinforces learning about the cocaine experience, she said.

The frontal cortex, which Wilbrecht called the "steering wheel" of the brain, controls functions such as long-term planning, decision-making and other behaviors involving higher reasoning and discipline.

The brain cells in the frontal cortex that Wilbrecht and her team studied regulate the output of this brain region, and may play a key role in decision-making. "These neurons, which are directly affected by cocaine use, have the potential to bias decision-making," she said.

Wilbrecht said the findings could potentially advance research in human addiction "by helping us identify what is going awry in the frontal cortexes of drug-addicted humans, and by explaining how drug-related cues come to dominate the brain's decision-making processes."

In the first of a series of experiments, the scientists gave cocaine injections to one group of mice and saline injections to another. The next day, they observed the animals' brain cells using a 2-photon laser scanning microscope. They were surprised to discover that even after the first dose, the mice treated with cocaine grew more new dendritic spines than the saline-treated mice.

In another experiment, they observed the mice before cocaine or saline treatment and then two hours afterward, and discovered that the animals that received cocaine were developing new dendritic spines within two hours after receiving the drug. Furthermore, the next morning, cocaine-induced spines accounted for almost four times more connections among nerve cells than was observed in saline-treated animals.

In a third experiment, the researchers for a week gave the mice cocaine in one distinctive chamber and saline in another, using identical procedures. Each chamber had its own characteristic visual design, texture and smell to distinguish it from the other chamber. They then let the mice choose which chamber to go to.

"The animals that showed the highest quantity of robust dendritic spines – the spines with the greatest likelihood of developing into synapses – showed the greatest change in preference toward the chamber where they received the cocaine," said Wilbrecht. "This suggests that the new spines might be material for the association that these mice have learned to make between the chamber and the drug."

Wilbrecht noted that the research would not have been possible without live brain imaging via the 2-photon laser scanning microscope, which was developed in 2002. "I grew up at the time of the famous public service campaign that showed a pan of frying eggs with the message, 'this is your brain on drugs,'" recalled Wilbrecht. "Now, with this microscope, we can actually say, 'this is a brain cell on drugs.'"

Co-authors of the study are Francisco Javier Munoz-Cuevas, PhD, and Jegath Athilingam of the Gallo Center, and Denise Piscopo, PhD, of the Gallo Center and the University of Oregon.

The study was supported by funds from the National Institutes of Health, the State of California, UCSF and the P. Royer and K. Clayton Family.

The UCSF-affiliated Ernest Gallo Clinic and Research Center is one of the world's preeminent academic centers for the study of the biological basis of alcohol and substance use disorders. Gallo Center discoveries of potential molecular targets for the development of therapeutic medications are extended through preclinical and proof-of-concept clinical studies.

UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care. It includes top-ranked graduate schools of dentistry, medicine, nursing and pharmacy, a graduate division with nationally renowned programs in basic biomedical, translational and population sciences, as well as a preeminent biomedical research enterprise and two top-ranked hospitals, UCSF Medical Center and UCSF Benioff Children's Hospital.

Jeffrey Norris | EurekAlert!
Further information:
http://www.ucsf.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>