Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gallo Center study in mice links cocaine use to new brain structures

26.08.2013
UCSF scientists identify possible mechanism for drug-seeking behavior in humans

Mice given cocaine showed rapid growth in new brain structures associated with learning and memory, according to a research team from the Ernest Gallo Clinic and Research Center at UC San Francisco. The findings suggest a way in which drug use may lead to drug-seeking behavior that fosters continued drug use, according to the scientists.

The researchers used a microscope that allowed them to peer directly into nerve cells within the brains of living mice, and within two hours of giving a drug they found significant increases in the density of dendritic spines – structures that bear synapses required for signaling – in the animals' frontal cortex. In contrast, mice given saline solution showed no such increase.

The researchers also found a relationship between the growth of new dendritic spines and drug-associated learning. Specifically, mice that grew the most new spines were those that developed the strongest preference for being in the enclosure where they received cocaine rather than in the enclosure where they received saline. The team published its findings online in Nature Neuroscience on August 25, 2013.

"This gives us a possible mechanism for how drug use fuels further drug-seeking behavior," said principal investigator Linda Wilbrecht, PhD, a Gallo investigator now at UC Berkeley, but who led the research while she was on the UCSF faculty.

"It's been observed that long-term drug users show decreased function in the frontal cortex in connection with mundane cues or tasks, and increased function in response to drug-related activity or information," Wilbrecht said. "This research suggests how the brains of drug users might shift toward those drug-related associations."

In all living brains there is a baseline level of creation of new spines in response to, or in anticipation of, day-to-day learning, Wilbrecht said. By enhancing this growth, cocaine might be a super-learning stimulus that reinforces learning about the cocaine experience, she said.

The frontal cortex, which Wilbrecht called the "steering wheel" of the brain, controls functions such as long-term planning, decision-making and other behaviors involving higher reasoning and discipline.

The brain cells in the frontal cortex that Wilbrecht and her team studied regulate the output of this brain region, and may play a key role in decision-making. "These neurons, which are directly affected by cocaine use, have the potential to bias decision-making," she said.

Wilbrecht said the findings could potentially advance research in human addiction "by helping us identify what is going awry in the frontal cortexes of drug-addicted humans, and by explaining how drug-related cues come to dominate the brain's decision-making processes."

In the first of a series of experiments, the scientists gave cocaine injections to one group of mice and saline injections to another. The next day, they observed the animals' brain cells using a 2-photon laser scanning microscope. They were surprised to discover that even after the first dose, the mice treated with cocaine grew more new dendritic spines than the saline-treated mice.

In another experiment, they observed the mice before cocaine or saline treatment and then two hours afterward, and discovered that the animals that received cocaine were developing new dendritic spines within two hours after receiving the drug. Furthermore, the next morning, cocaine-induced spines accounted for almost four times more connections among nerve cells than was observed in saline-treated animals.

In a third experiment, the researchers for a week gave the mice cocaine in one distinctive chamber and saline in another, using identical procedures. Each chamber had its own characteristic visual design, texture and smell to distinguish it from the other chamber. They then let the mice choose which chamber to go to.

"The animals that showed the highest quantity of robust dendritic spines – the spines with the greatest likelihood of developing into synapses – showed the greatest change in preference toward the chamber where they received the cocaine," said Wilbrecht. "This suggests that the new spines might be material for the association that these mice have learned to make between the chamber and the drug."

Wilbrecht noted that the research would not have been possible without live brain imaging via the 2-photon laser scanning microscope, which was developed in 2002. "I grew up at the time of the famous public service campaign that showed a pan of frying eggs with the message, 'this is your brain on drugs,'" recalled Wilbrecht. "Now, with this microscope, we can actually say, 'this is a brain cell on drugs.'"

Co-authors of the study are Francisco Javier Munoz-Cuevas, PhD, and Jegath Athilingam of the Gallo Center, and Denise Piscopo, PhD, of the Gallo Center and the University of Oregon.

The study was supported by funds from the National Institutes of Health, the State of California, UCSF and the P. Royer and K. Clayton Family.

The UCSF-affiliated Ernest Gallo Clinic and Research Center is one of the world's preeminent academic centers for the study of the biological basis of alcohol and substance use disorders. Gallo Center discoveries of potential molecular targets for the development of therapeutic medications are extended through preclinical and proof-of-concept clinical studies.

UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care. It includes top-ranked graduate schools of dentistry, medicine, nursing and pharmacy, a graduate division with nationally renowned programs in basic biomedical, translational and population sciences, as well as a preeminent biomedical research enterprise and two top-ranked hospitals, UCSF Medical Center and UCSF Benioff Children's Hospital.

Jeffrey Norris | EurekAlert!
Further information:
http://www.ucsf.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>