Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Freshwater fish at the top of the food chain evolve more slowly

31.07.2009
Once fish evolve the size and speed needed to become top predators, natural selection keeps them in an evolutionary holding pattern, a new study finds

For avid fishermen and anglers, the largemouth bass is a favorite freshwater fish with an appetite for minnows.

A new study finds that once they evolved to eat other fish, largemouth bass and fellow fish-feeders have remained relatively unchanged compared with their insect- and snail-eating cousins. As these fishes became top predators in aquatic ecosystems, natural selection put the breaks on evolution, say researchers.

A highly sought-after game fish, the largemouth bass belongs to a group of roughly 30 freshwater fishes known as centrarchids. Centrarchids are native to North America but have since been introduced into lakes, rivers and streams worldwide. This group of fishes eats a wide range of aquatic animals, says first author David Collar. "There's a good deal of diet diversity in the group," says Collar, a postdoctoral researcher at Harvard University. "Some species feed on insects, snails, or small crustaceans, and others feed primarily on fish."

In terms of nutritional value, fish are loaded with fats and proteins needed for growth, explain the researchers. "Fish make great fish food," says co-author Brian O'Meara of the National Evolutionary Synthesis Center. "But they're hard to catch," says O'Meara.

Biologists have long known that certain head and body shapes make some centrarchids better at catching fish than others. To catch, kill, and swallow fish prey, it helps to have a supersized mouth. "There are a lot of different sizes and shapes that will be fairly good at feeding on insects," Collar explains. "But there's really only one way to be good at feeding on fish – you need a large mouth that can engulf the prey." The largemouth bass is a prime example: "There's no fish out there that's a better fish-feeder," says co-author Peter Wainwright of the University of California at Davis.

One key to feeding on fish is to have a large mouth, but the other part of the equation is speed, the researchers explain. "A largemouth bass mostly relies on swimming to overtake its prey, and at the last moment will pop open its mouth — kind of like popping open an umbrella — and inhale the prey item," says Wainwright. "They're able to strike very quickly and inhale a huge volume of water, which allows them to catch these big elusive prey."

For largemouth bass and other species that feed primarily on fish, the researchers wanted to know how this feeding strategy affected the pace and shape of evolution. "The question we wanted to ask was: What is the interplay between the evolution of diet and the evolution of form?" says Collar.

To find out, the researchers examined museum specimens representing 29 species of centrarchid fishes. Using a chemical process to stain and visualize the bones, muscles, and connective tissue, they measured the fine parts of the head and mouth. "A fish mouth is much more complicated than our own mouth," says Wainwright. "Whereas we have one bone that moves — our jaw — fish actually have two dozen separately moving bones, and lots of muscles that move those bones in a coordinated fashion."

By mapping these measurements onto the centrarchid family tree — together with data on what each fish eats — the researchers were able to reconstruct how diet and head shape have changed over time. "It looks as if the variety of head shapes and sizes in centrarchids is strongly influenced by what they eat — primarily whether they eat other fish or not," says Collar.

More importantly, when they compared fish-feeders with species that eat other types of prey, the researchers found that bass and other centrarchids that feed primarily on fish have remained relatively unchanged over time. Once they evolved the optimal size and shape for catching fish — roughly 20 million years ago — natural selection seems to have kept them in an evolutionary holding pattern, the researchers say.

"At some point in the history of this group, some of them started feeding on fish," says Wainwright. "And once they achieved a morphology that was good at feeding on fish, they tended not to evolve away from that," he adds. "They were already good at catching the best thing out there. Why should they diversify any more? Life was good."

The team's findings were published in the June 2009 issue of Evolution.

CITATION: Collar, D., B. O'Meara, P. Wainwright, and T. Near. (2009). "Piscivory limits diversification of feeding morphology in centrarchid fishes." Evolution 63(6): 1557-1573.

The National Evolutionary Synthesis Center (NESCent) is an NSF-funded collaborative research center operated by Duke University, the University of North Carolina at Chapel Hill, and North Carolina State University.

Robin Ann Smith | EurekAlert!
Further information:
http://www.nescent.org

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>