Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Freshwater fish at the top of the food chain evolve more slowly

31.07.2009
Once fish evolve the size and speed needed to become top predators, natural selection keeps them in an evolutionary holding pattern, a new study finds

For avid fishermen and anglers, the largemouth bass is a favorite freshwater fish with an appetite for minnows.

A new study finds that once they evolved to eat other fish, largemouth bass and fellow fish-feeders have remained relatively unchanged compared with their insect- and snail-eating cousins. As these fishes became top predators in aquatic ecosystems, natural selection put the breaks on evolution, say researchers.

A highly sought-after game fish, the largemouth bass belongs to a group of roughly 30 freshwater fishes known as centrarchids. Centrarchids are native to North America but have since been introduced into lakes, rivers and streams worldwide. This group of fishes eats a wide range of aquatic animals, says first author David Collar. "There's a good deal of diet diversity in the group," says Collar, a postdoctoral researcher at Harvard University. "Some species feed on insects, snails, or small crustaceans, and others feed primarily on fish."

In terms of nutritional value, fish are loaded with fats and proteins needed for growth, explain the researchers. "Fish make great fish food," says co-author Brian O'Meara of the National Evolutionary Synthesis Center. "But they're hard to catch," says O'Meara.

Biologists have long known that certain head and body shapes make some centrarchids better at catching fish than others. To catch, kill, and swallow fish prey, it helps to have a supersized mouth. "There are a lot of different sizes and shapes that will be fairly good at feeding on insects," Collar explains. "But there's really only one way to be good at feeding on fish – you need a large mouth that can engulf the prey." The largemouth bass is a prime example: "There's no fish out there that's a better fish-feeder," says co-author Peter Wainwright of the University of California at Davis.

One key to feeding on fish is to have a large mouth, but the other part of the equation is speed, the researchers explain. "A largemouth bass mostly relies on swimming to overtake its prey, and at the last moment will pop open its mouth — kind of like popping open an umbrella — and inhale the prey item," says Wainwright. "They're able to strike very quickly and inhale a huge volume of water, which allows them to catch these big elusive prey."

For largemouth bass and other species that feed primarily on fish, the researchers wanted to know how this feeding strategy affected the pace and shape of evolution. "The question we wanted to ask was: What is the interplay between the evolution of diet and the evolution of form?" says Collar.

To find out, the researchers examined museum specimens representing 29 species of centrarchid fishes. Using a chemical process to stain and visualize the bones, muscles, and connective tissue, they measured the fine parts of the head and mouth. "A fish mouth is much more complicated than our own mouth," says Wainwright. "Whereas we have one bone that moves — our jaw — fish actually have two dozen separately moving bones, and lots of muscles that move those bones in a coordinated fashion."

By mapping these measurements onto the centrarchid family tree — together with data on what each fish eats — the researchers were able to reconstruct how diet and head shape have changed over time. "It looks as if the variety of head shapes and sizes in centrarchids is strongly influenced by what they eat — primarily whether they eat other fish or not," says Collar.

More importantly, when they compared fish-feeders with species that eat other types of prey, the researchers found that bass and other centrarchids that feed primarily on fish have remained relatively unchanged over time. Once they evolved the optimal size and shape for catching fish — roughly 20 million years ago — natural selection seems to have kept them in an evolutionary holding pattern, the researchers say.

"At some point in the history of this group, some of them started feeding on fish," says Wainwright. "And once they achieved a morphology that was good at feeding on fish, they tended not to evolve away from that," he adds. "They were already good at catching the best thing out there. Why should they diversify any more? Life was good."

The team's findings were published in the June 2009 issue of Evolution.

CITATION: Collar, D., B. O'Meara, P. Wainwright, and T. Near. (2009). "Piscivory limits diversification of feeding morphology in centrarchid fishes." Evolution 63(6): 1557-1573.

The National Evolutionary Synthesis Center (NESCent) is an NSF-funded collaborative research center operated by Duke University, the University of North Carolina at Chapel Hill, and North Carolina State University.

Robin Ann Smith | EurekAlert!
Further information:
http://www.nescent.org

More articles from Studies and Analyses:

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

nachricht Urbanization to convert 300,000 km2 of prime croplands
27.12.2016 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>