Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Freezing breast tumors helps stop cancer’s spread in mice, U-M study finds

03.03.2010
Cryoablation generates immune response that kills metastases in mice

Clinical trial open now to evaluate this technique in patients

Freezing a cancer kills it in its place, and also appears to generate an immune response that helps stop the cancer’s spread, leading to improved survival rates over surgery, according to a new study in mice from researchers at the University of Michigan Comprehensive Cancer Center.

Researchers looked at two different cryoablation techniques, which both involve applying a cold probe to a tumor to freeze it. The study was done in mice with breast cancer. One method involves freezing the tumor rapidly, in about 30 seconds; the other freezes the tumor slowly, taking a few minutes. Results from the cryoablation were compared to results from mice whose tumors were removed with surgery.

Both cryoablation techniques successfully killed the breast tumor. The mice treated with the rapid freeze had fewer tumors that spread to the lungs and improved survival compared to mice treated with surgery alone or mice treated with the slower freezing technique. The study showed that the benefit from the rapid freezing is likely due to changes in the immune system that help to kill the tumor. Freezing with the slower technique appeared to make the immune system not as able to kill the tumor.

The study appears online in Annals of Surgical Oncology. Based on these results from mice, researchers are now conducting a clinical trial using cryoablation in patients with breast cancer. In this trial, researchers use the rapid freezing technique.

“Cryoablation has strong potential as a treatment for breast cancer. Not only does it appear effective in treating the primary tumor with little cosmetic concerns, but it also may stimulate an immune response capable of eradicating any cells that have traveled throughout the body, reducing both local and distant recurrence, similar to giving a breast cancer vaccine,” says lead study author Michael Sabel, M.D., associate professor of surgery at the U-M Medical School.

“What we learned in this study is that all cryoablation is not equal. The technique used to freeze the tissue can have a significant impact on how the immune system responds. The system we use today appears to be ideal for both destroying the tumor within the breast and generating an anti-cancer immune response," Sabel says.

U-M researchers are participating in a national clinical trial to evaluate using cryoablation for early stage breast cancer. Participants will undergo rapid freezing of their tumor, and their blood samples will be analyzed to assess changes in their immune system. All participants will be treated three to four weeks later with standard surgery to remove their tumor.

For more information about the study, contact the U-M Cancer AnswerLine at 800-865-1125.

Cryoablation is currently used routinely for prostate cancer, kidney cancer and a variety of cancers that have spread to the liver and bone.

Breast cancer statistics: 192,280 Americans will be diagnosed with breast cancer this year and 40,610 will die from the disease, according to the American Cancer Society

Funding: No external funding

Reference: Annals of Surgical Oncology, DOI 10.1245/s10434-009-0846-1

Resources:
U-M Cancer AnswerLine, 800-865-1125
U-M Comprehensive Cancer Center, www.mcancer.org

Nicole Fawcett | UMICH
Further information:
http://www.umich.edu

More articles from Studies and Analyses:

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

nachricht Urbanization to convert 300,000 km2 of prime croplands
27.12.2016 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>