Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Freezing breast tumors helps stop cancer’s spread in mice, U-M study finds

03.03.2010
Cryoablation generates immune response that kills metastases in mice

Clinical trial open now to evaluate this technique in patients

Freezing a cancer kills it in its place, and also appears to generate an immune response that helps stop the cancer’s spread, leading to improved survival rates over surgery, according to a new study in mice from researchers at the University of Michigan Comprehensive Cancer Center.

Researchers looked at two different cryoablation techniques, which both involve applying a cold probe to a tumor to freeze it. The study was done in mice with breast cancer. One method involves freezing the tumor rapidly, in about 30 seconds; the other freezes the tumor slowly, taking a few minutes. Results from the cryoablation were compared to results from mice whose tumors were removed with surgery.

Both cryoablation techniques successfully killed the breast tumor. The mice treated with the rapid freeze had fewer tumors that spread to the lungs and improved survival compared to mice treated with surgery alone or mice treated with the slower freezing technique. The study showed that the benefit from the rapid freezing is likely due to changes in the immune system that help to kill the tumor. Freezing with the slower technique appeared to make the immune system not as able to kill the tumor.

The study appears online in Annals of Surgical Oncology. Based on these results from mice, researchers are now conducting a clinical trial using cryoablation in patients with breast cancer. In this trial, researchers use the rapid freezing technique.

“Cryoablation has strong potential as a treatment for breast cancer. Not only does it appear effective in treating the primary tumor with little cosmetic concerns, but it also may stimulate an immune response capable of eradicating any cells that have traveled throughout the body, reducing both local and distant recurrence, similar to giving a breast cancer vaccine,” says lead study author Michael Sabel, M.D., associate professor of surgery at the U-M Medical School.

“What we learned in this study is that all cryoablation is not equal. The technique used to freeze the tissue can have a significant impact on how the immune system responds. The system we use today appears to be ideal for both destroying the tumor within the breast and generating an anti-cancer immune response," Sabel says.

U-M researchers are participating in a national clinical trial to evaluate using cryoablation for early stage breast cancer. Participants will undergo rapid freezing of their tumor, and their blood samples will be analyzed to assess changes in their immune system. All participants will be treated three to four weeks later with standard surgery to remove their tumor.

For more information about the study, contact the U-M Cancer AnswerLine at 800-865-1125.

Cryoablation is currently used routinely for prostate cancer, kidney cancer and a variety of cancers that have spread to the liver and bone.

Breast cancer statistics: 192,280 Americans will be diagnosed with breast cancer this year and 40,610 will die from the disease, according to the American Cancer Society

Funding: No external funding

Reference: Annals of Surgical Oncology, DOI 10.1245/s10434-009-0846-1

Resources:
U-M Cancer AnswerLine, 800-865-1125
U-M Comprehensive Cancer Center, www.mcancer.org

Nicole Fawcett | UMICH
Further information:
http://www.umich.edu

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>