Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fraunhofer IAO launches "Kopfarbeit Index KAI"

09.10.2013
What constitutes attractive work for students and our high-potential employees?

How do the students of today want to work tomorrow? Fraunhofer IAO has been using its “Kopfarbeit-Index KAI®” to find out. Since September, students have been invited to define their ideal working conditions by completing an online questionnaire.

By joining the KAI working group, companies can find out exactly what their top performers value most at work, and discover which working conditions appeal to student groups they are looking to target.

If companies want to score points when competing for the best intellectual talent, they must ask themselves what it is that makes a position attractive to future top performers. What conditions do today’s students want for their future employment? What is the present working situation for the thinkers and knowledge workers that companies already employ – and how would they actually like to work?

Fraunhofer IAO developed the “Kopfarbeit-Index KAI®” to answer these questions. The project is designed to elicit the specific wishes of students and top performers when it comes to their dream jobs.

What’s novel about KAI is that its questions target the attractiveness of individual positions rather than seeking to question the attractiveness of a company. In so doing the focus is not on company culture or the social benefits a company offers, but on the working conditions associated with a particular function. What challenges are encountered on a daily basis? Does the job entail working on many tasks simultaneously? Is it possible or even obligatory for employees to commute between several places of work?

All the information gathered in the survey helps paint a detailed picture of which activities are attractive to which students and knowledge workers, and signposts how employers can specifically tailor work to make it more attractive, both for new talents and for today’s top performers.

Companies seeking to strengthen their recruitment process or improve staff loyalty are invited to join the KAI working group. Members are assured feedback from the specific group of students they wish to target, and can make use of Fraunhofer IAO’s expertise and services when surveying their own knowledge workers. Within the working group, members have the opportunity to profit from exchanging ideas with other companies, and benefit from being constantly updated with the latest survey results as they come in. Furthermore, members can post job profiles for positions within their own organization on the KAI® website and catch the attention of students looking for the sort of challenges they offer.

Membership is open to any organization that employs thinkers or knowledge workers, including administrative departments, non-profit organizations, and associations. It is possible to join at any time. The first set of job profiles will appear online from December 2013 onwards.

Contact:
Gabriele Korge
Business Performance Management
Fraunhofer IAO
Nobelstraße 12
70569 Stuttgart, Germany
Phone: +49 711 970-2261
Email: gabriele.korge@iao.fraunhofer.de

Juliane Segedi | Fraunhofer-Institut
Further information:
http://www.kai.iao.fraunhofer.de/
http://www.iao.fraunhofer.de/lang-en/business-areas/corporate-development-work-design/1071-fraunhofer-iao-launches-kopfarbeit-index-kai

Further reports about: IAO Kopfarbeit-Index KAI® working conditions

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>