Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Framework could improve southeast rainfall forecasts

21.11.2013
Summer rainfall in the southeastern United States is vitally important to the region's agriculture, economy and ecology. But accurately forecasting how much rain may fall in an upcoming season can be tricky because of the complicated physical processes and environmental factors that determine its intensity.

A new study by two Duke University scientists may help improve seasonal forecasts by providing a new statistical "framework" that meteorologists can use to predict the likely intensity of rainfall for the coming summer.

"Using our new framework, we found that the characteristics of southeastern U.S. rainfall are influenced by multiple climate factors," said Laifang Li, a PhD student in climatology at Duke's Nicholas School of the Environment. "By identifying which of these climate factors or conditions is occurring, we can make more accurate rainfall intensity forecasts."

The intensity of light rainfall is associated with the combined effects of La Nina and the tri-pole sea surface temperature anomaly (SSTA) pattern over the North Atlantic, she explained. Strong, heavy rainfall is more likely to occur in years when there is a horseshoe-like SSTA pattern over the north Atlantic. In contrast, moderate rainfall is more likely caused by internal dynamics in the atmosphere and is less correlated with the SSTA.

Li developed the new statistical modeling framework with her doctoral advisor, Wenhong Li, assistant professor of climatology at the Nicholas School.

"Traditionally, probability models treat rainfall samples with a single cluster. These models cannot capture the multi-mode feature of summer rainfall and associated factors that influence precipitation over the Southeast. Our new framework, by comparison, is based on a configuration of a three-cluster finite normal mixture model and is realized using Bayesian inference. Each cluster reflects the characteristics of light, moderate or heavy rainfall," Laifang Li explained.

By using a three-cluster framework, Li and Li found they can better identify the characteristics of rainfall and its underlying physical processes. This allows them to make more accurate seasonal forecasts.

While their current framework is designed specifically to forecast rainfall intensity in the Southeast during the months of June to August, they believe it can be adjusted and extended to other regions and seasons, as well.

"This could be a very useful tool to help us better understand the response of regional hydrology to climate variability and climate change in similar areas around the world," Wenhong Li said.

Li and Li published their finding in a peer-reviewed study in the online, open-access journal Environmental Research Letters.

Funding for the research came from a National Science Foundation grant (AGS-1147608).

CITATION: "Southeastern United States Summer Rainfall Framework and Its Implication for Seasonal Predictions," Laifang Li, Wenhong Li. Environmental Research Letters, Oct. 28, 2013. DOI: 10.1088/1748-9326/8/4/044017

Tim Lucas | EurekAlert!
Further information:
http://www.duke.edu

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>