Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Framework could improve southeast rainfall forecasts

21.11.2013
Summer rainfall in the southeastern United States is vitally important to the region's agriculture, economy and ecology. But accurately forecasting how much rain may fall in an upcoming season can be tricky because of the complicated physical processes and environmental factors that determine its intensity.

A new study by two Duke University scientists may help improve seasonal forecasts by providing a new statistical "framework" that meteorologists can use to predict the likely intensity of rainfall for the coming summer.

"Using our new framework, we found that the characteristics of southeastern U.S. rainfall are influenced by multiple climate factors," said Laifang Li, a PhD student in climatology at Duke's Nicholas School of the Environment. "By identifying which of these climate factors or conditions is occurring, we can make more accurate rainfall intensity forecasts."

The intensity of light rainfall is associated with the combined effects of La Nina and the tri-pole sea surface temperature anomaly (SSTA) pattern over the North Atlantic, she explained. Strong, heavy rainfall is more likely to occur in years when there is a horseshoe-like SSTA pattern over the north Atlantic. In contrast, moderate rainfall is more likely caused by internal dynamics in the atmosphere and is less correlated with the SSTA.

Li developed the new statistical modeling framework with her doctoral advisor, Wenhong Li, assistant professor of climatology at the Nicholas School.

"Traditionally, probability models treat rainfall samples with a single cluster. These models cannot capture the multi-mode feature of summer rainfall and associated factors that influence precipitation over the Southeast. Our new framework, by comparison, is based on a configuration of a three-cluster finite normal mixture model and is realized using Bayesian inference. Each cluster reflects the characteristics of light, moderate or heavy rainfall," Laifang Li explained.

By using a three-cluster framework, Li and Li found they can better identify the characteristics of rainfall and its underlying physical processes. This allows them to make more accurate seasonal forecasts.

While their current framework is designed specifically to forecast rainfall intensity in the Southeast during the months of June to August, they believe it can be adjusted and extended to other regions and seasons, as well.

"This could be a very useful tool to help us better understand the response of regional hydrology to climate variability and climate change in similar areas around the world," Wenhong Li said.

Li and Li published their finding in a peer-reviewed study in the online, open-access journal Environmental Research Letters.

Funding for the research came from a National Science Foundation grant (AGS-1147608).

CITATION: "Southeastern United States Summer Rainfall Framework and Its Implication for Seasonal Predictions," Laifang Li, Wenhong Li. Environmental Research Letters, Oct. 28, 2013. DOI: 10.1088/1748-9326/8/4/044017

Tim Lucas | EurekAlert!
Further information:
http://www.duke.edu

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>