Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fouls go left: Soccer referees may be biased based on play's direction of motion

08.07.2010
Penn study finds left-to-right readers more likely to call foul for right-to-left attacks

Soccer referees may have an unconscious bias towards calling fouls based on a play's direction of motion, according to a new study from the of University of Pennsylvania School of Medicine. Researchers found that soccer experts made more foul calls when action moved right-to-left, or leftward, compared to left-to-right or rightward action, suggesting that two referees watching the same play from different vantage points may be inclined to make a different call. The study appears in the July 7 online edition of PLoS ONE.

It's been documented that individuals who read languages which flow left-to-right are more likely to have a negative bias for events moving in the opposite direction, from right-to-left. In the Penn study of twelve members of the University of Pennsylvania's varsity soccer teams (all native English speaking), researchers found that participants viewing the soccer plays were more likely to call a foul when seeing a right-to-left attack

"The effects are impressive considering that left-moving and right-moving images were identical, with the only difference being that they were flipped along the x-axis to create right-to-left and left-to-right versions," said lead researcher Alexander Kranjec, PhD, a post-doctoral fellow in the Neurology Department at the University of Pennsylvania School of Medicine. "If the spatial biases we observed in this population of soccer players have similar effects on referees in real matches, they may influence particular officials differently: referees on the field will more frequently be in positions that lower their threshold for calling fouls during an attack, compared to assistant referees working the lines."

In real matches, referees and linesmen tend to be exposed to different quantities of right-to-left or left-to-right attacking plays, as referees employ a system to help them cover the field efficiently. Referees are encouraged to use a diagonal patrolling technique, choosing to run either a left or a right diagonal, while the assistant referees are tasked with running the sidelines.

Based on this study, the left diagonal system would favor the offense (viewing more attacks from right-to-left), and the right diagonal system would favor the defense (viewing more attacks from left-to-right). Given the relational opposition, the authors suggest that referees should avoid switching diagonals at halftime.

"There could be an unfair advantage if one team goes into halftime with a lead and the referees switch to a right diagonal system in the second half, favoring both defenses," said Dr. Kranjec. "However, because referees viewing leftward action may be more likely to see a foul when no foul was actually committed, as seemed to be the case when the referee disallowed what should have been the US team's third goal against Slovenia, the bias could work against the offense sometimes."

Study participants called approximately three more fouls when images of soccer plays where viewed from right-to-left (66.5 fouls) compared to mirror images moving left-to-right (63.3 fouls). Participants were statistically more likely to call a foul when seeing a right-to-left attack.

Previous studies suggest that similar directional effects are reversed in populations that read right-to-left languages, but other populations (e.g. Arabic or Hebrew readers) would need to be tested directly to see if the effects reported in this study correlate with reading habits.

The study will be available online at http://dx.plos.org/10.1371/journal.pone.0011667.

In addition to Dr. Kranjec, the research team included professor of Neurology Anjan Chatterjee, MD, Matthew Lehet and Bianca Bromberger, all of the University of Pennsylvania School of Medicine's Neurology Department and Center for Cognitive Neuroscience. This research was supported by the National Institutes of Health [RO1 DC004817, RO1 DC008779] and the National Science Foundation [subcontract under SBE0541957]. The researchers reported no conflicts of interest.

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the University of Pennsylvania School of Medicine (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $3.6 billion enterprise.

Penn's School of Medicine is currently ranked #3 in U.S. News & World Report's survey of research-oriented medical schools, and is consistently among the nation's top recipients of funding from the National Institutes of Health, with $367.2 million awarded in the 2008 fiscal year.

Penn Medicine's patient care facilities include:

The Hospital of the University of Pennsylvania – the nation's first teaching hospital, recognized as one of the nation's top 10 hospitals by U.S. News & World Report.
Penn Presbyterian Medical Center – named one of the top 100 hospitals for cardiovascular care by Thomson Reuters for six years.

Pennsylvania Hospital – the nation's first hospital, founded in 1751, nationally recognized for excellence in orthopaedics, obstetrics & gynecology, and behavioral health.

Additional patient care facilities and services include Penn Medicine at Rittenhouse, a Philadelphia campus offering inpatient rehabilitation and outpatient care in many specialties; as well as a primary care provider network; a faculty practice plan; home care and hospice services; and several multispecialty outpatient facilities across the Philadelphia region.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2008, Penn Medicine provided $282 million to benefit our community.

Kim Guenther | EurekAlert!
Further information:
http://www.uphs.upenn.edu

Further reports about: Fouls Medicine Neurology Pennsylvania health services soccer

More articles from Studies and Analyses:

nachricht Physics of bubbles could explain language patterns
25.07.2017 | University of Portsmouth

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>