Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Forsyth scientists suggest linkages between obesity and oral bacterial infection

A scientific team from The Forsyth Institute has discovered new links between certain oral bacteria and obesity.

In a recent study, the researchers demonstrated that the salivary bacterial composition of overweight women differs from non-overweight women. This preliminary work may provide clues to interactions between oral bacteria and the pathology of obesity. This research may help investigators learn new avenues for fighting the obesity epidemic.

This work will be published in the Journal of Dental Research, and is available online today at"There has been a world-wide explosion of obesity, with many contributing factors," said Dr. J. Max Goodson, senior author of the study. "However, the inflammatory nature of the disease is also recognized. This led me to question potential unknown contributing causes of obesity. Could it be an epidemic involving an infectious agent?" "It is exciting to image the possibilities if oral bacteria are contributing to some types of obesity," added Goodson.

Summary of Study

In order to measure the salivary bacterial populations of overweight women, samples were collected from 313 women with a body mass index between 27 and 32 (classifying them as overweight). Using DNA analysis, the researchers measured the bacterial populations of this group and compared it with historical data from 232 individuals that were not overweight. Significant differences in seven of the 40 species studied occurred in the salivary bacteria of subjects in the overweight group. In addition, more than 98 percent of the overweight women could be identified by the presence of a single bacterial species, called Selenomanas noxia, at levels greater than 1.05 percent of the total salivary bacteria. These data suggest that the composition of salivary bacteria changes in overweight women. It seems likely that these bacterial species could serve as indicators of a developing overweight condition and possibly be related to the underlying causation.

Dr. Goodson noted that the reasons for a relationship between obesity and oral bacteria are likely complex. The observed relationship may be circumstantial as being related to diet or opportunistic due to metabolic changes. In the next phase of this research, Dr. Goodson plans to further examine this relationship by initially conducting a controlled cohort study to see if this initial observation can be reproduced. In addition, he hopes to conduct longitudinal studies in children to see if oral infection relates to weight gain. Ultimately, the development of strategies to eliminate specific oral bacteria would be required to provide definitive evidence that certain oral bacteria may be responsible for weight gain.

J. Max Goodson, DDS, PhD, is a Senior Member of the Staff at The Forsyth Institute and heads up The Forsyth Clinical Research Collaborative (CRC). . Principal research personnel associated with the CRC include scientists that conduct clinical and health care delivery research.

This work was supported in part by Interleukin Genetics of Waltham, MA and by a grant from the National Institute of Dental and Craniofacial Research.

The Forsyth Institute is the world's leading independent organization dedicated to scientific research and education in oral health and related biomedical sciences.

Jennifer Kelly | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>