Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Forsyth scientists suggest linkages between obesity and oral bacterial infection

13.07.2009
A scientific team from The Forsyth Institute has discovered new links between certain oral bacteria and obesity.

In a recent study, the researchers demonstrated that the salivary bacterial composition of overweight women differs from non-overweight women. This preliminary work may provide clues to interactions between oral bacteria and the pathology of obesity. This research may help investigators learn new avenues for fighting the obesity epidemic.

This work will be published in the Journal of Dental Research, and is available online today at http://jdr.sagepub.com/cgi/content/full/88/6/519."There has been a world-wide explosion of obesity, with many contributing factors," said Dr. J. Max Goodson, senior author of the study. "However, the inflammatory nature of the disease is also recognized. This led me to question potential unknown contributing causes of obesity. Could it be an epidemic involving an infectious agent?" "It is exciting to image the possibilities if oral bacteria are contributing to some types of obesity," added Goodson.

Summary of Study

In order to measure the salivary bacterial populations of overweight women, samples were collected from 313 women with a body mass index between 27 and 32 (classifying them as overweight). Using DNA analysis, the researchers measured the bacterial populations of this group and compared it with historical data from 232 individuals that were not overweight. Significant differences in seven of the 40 species studied occurred in the salivary bacteria of subjects in the overweight group. In addition, more than 98 percent of the overweight women could be identified by the presence of a single bacterial species, called Selenomanas noxia, at levels greater than 1.05 percent of the total salivary bacteria. These data suggest that the composition of salivary bacteria changes in overweight women. It seems likely that these bacterial species could serve as indicators of a developing overweight condition and possibly be related to the underlying causation.

Dr. Goodson noted that the reasons for a relationship between obesity and oral bacteria are likely complex. The observed relationship may be circumstantial as being related to diet or opportunistic due to metabolic changes. In the next phase of this research, Dr. Goodson plans to further examine this relationship by initially conducting a controlled cohort study to see if this initial observation can be reproduced. In addition, he hopes to conduct longitudinal studies in children to see if oral infection relates to weight gain. Ultimately, the development of strategies to eliminate specific oral bacteria would be required to provide definitive evidence that certain oral bacteria may be responsible for weight gain.

J. Max Goodson, DDS, PhD, is a Senior Member of the Staff at The Forsyth Institute and heads up The Forsyth Clinical Research Collaborative (CRC). . Principal research personnel associated with the CRC include scientists that conduct clinical and health care delivery research.

This work was supported in part by Interleukin Genetics of Waltham, MA and by a grant from the National Institute of Dental and Craniofacial Research.

The Forsyth Institute is the world's leading independent organization dedicated to scientific research and education in oral health and related biomedical sciences.

Jennifer Kelly | EurekAlert!
Further information:
http://www.forsyth.org

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>