Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Formula Helps Gauge the Winds of Change

27.01.2010
The Greek philosopher Heraclitus said that change is the only constant. People change, organizations change, the way people and institutions interact changes over time. Change affects social interactions and the natural world, and it even plays a role in how networks such as air traffic control and banking systems function.

University of Washington research has developed a formula to examine just what sorts of changes occur over time among complex and integrated structures. A key to understanding what's happening is to think of the relationships as networks.

"We've been working on the mathematics of it for some time and it's worked out quite well. We're able to use our formula to create maps that show in detail what's going on," said Carl Bergstrom, a UW associate professor of biology.

He is co-author of a paper describing the work, which is being published Wednesday (Jan. 27) in the online journal PLoS One, published by the Public Library of Science. The lead author is Martin Rosvall of Umeå University in Sweden, who worked on the project while a UW postdoctoral researcher.

To test their formula, the scientists applied the principals to mapping changes in the field of neuroscience, which a decade ago was mostly a specialty for individuals in a number of other disciplines, such as neurology, psychology or cell biology. They looked at thousands of citations for papers published in scholarly journals in the last 10 years to see how the field has evolved.

"What's happened is that neuroscience has gone from an interdisciplinary specialty to a discipline of its own," Bergstrom said. "These maps throw out our preconceptions of what the disciplines are and look at it in terms of what people are citing."

He believes there are many other applications, such as looking at changes in the flow of air traffic in the United States over time, with the emergence of dominantly busy airports such as Chicago and Atlanta. Those airport operations can affect the nation's entire air traffic system. The formula eventually could allow a closer examination of how the system changed with airline deregulation that began in the late 1970s.

Bergstrom is currently working with Federal Reserve economists to analyze the financial flow between Federal Reserve banks and the nation's largest banking institutions, and he believes the new tool could have broad applications in the public health field as well.

"I think there are many opportunities to look at biological networks, genetics and the spread and treatment of cancer for example," he said.

The tool also could be useful in tracking the spread of illnesses such as AIDS and H1N1, the so-called swine flu.

"If you want to understand the way infectious diseases spread through human populations, you have to understand the network of contacts through which those transmissions occur," Bergstrom said.

The work was funded by the National Institute of General Medical Sciences Models of Infectious Disease Agent Study.

For more information, contact Bergstrom at 206-685-3487 or cbergst@uw.edu.

Vince Stricherz | Newswise Science News
Further information:
http://www.uw.edu

More articles from Studies and Analyses:

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>