Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New form of brain plasticity: Study shows how social isolation disrupts myelin production

12.11.2012
Research may prompt new investigations into white matter’s role in psychiatric disorders as well as connections between mood and myelin diseases, like MS

Animals that are socially isolated for prolonged periods make less myelin in the region of the brain responsible for complex emotional and cognitive behavior, researchers at the University at Buffalo and Mt. Sinai School of Medicine report in Nature Neuroscience online.

The research sheds new light on brain plasticity, the brain's ability to adapt to environmental changes. It reveals that neurons aren't the only brain structures that undergo changes in response to an individual's environment and experience, according to one of the paper's lead authors, Karen Dietz, PhD, research scientist in the Department of Pharmacology and Toxicology in the UB School of Medicine and Biomedical Sciences.

Dietz did the work while a postdoctoral researcher at Mt. Sinai School of Medicine; Jia Liu, PhD, a Mt. Sinai postdoctoral researcher, is the other lead author.

The paper notes that changes in the brain's white matter, or myelin, have been seen before in psychiatric disorders, and demyelinating disorders have also had an association with depression. Recently, myelin changes were also seen in very young animals or adolescents responding to environmental changes.

"This research reveals for the first time a role for myelin in adult psychiatric disorders," Dietz says. "It demonstrates that plasticity in the brain is not restricted to neurons, but actively occurs in glial cells, such as the oligodendrocytes, which produce myelin."

Myelin is the crucial fatty material that wraps the axons of neurons and allows them to signal effectively. Normal nerve function is lost in demyelinating disorders, such as MS and the rare, fatal, childhood disease, Krabbe's disease. T

his paper reveals that the stress of social isolation disrupts the sequence in which the myelin-making cells, the oligodendrocytes, are formed. In the experiment, adult mice, normally social animals, were isolated for eight weeks to induce a depressive-like state. They were then introduced to a "novel" mouse, one they hadn't seen before; while mice are normally highly motivated to be social, those who had been socially isolated did not show any interest in interacting with the new mouse, a model of social avoidance and withdrawal.

Brain tissue analysis of the socially isolated animals revealed significantly lower than normal levels of gene transcription for oligodendrocyte cells in the prefrontal cortex, a brain region responsible for emotional and cognitive behavior.

"This research provides the first explanation of the mechanism behind how this brain plasticity occurs," says Dietz, "showing how this change in the level of social interaction of the adult animal resulted in changes in oligodendrocytes."

The key change was that cellular nuclei in the prefrontal cortex contained less heterochromatin, a tightly packed form of DNA material, which is unavailable for gene expression.

"This process of DNA compaction is what signifies that the oligodendrocytes have matured, allowing them to produce normal amounts of myelin," says Dietz. "We have observed in socially isolated animals that there isn't as much compaction, and the oligodendrocytes look more immature. As adults age, normally, you would see more compaction, but when social isolation interferes, there's less compaction and therefore, less myelin being made."

She adds, however, that the research also showed that myelin production went back to normal after a period of social integration, suggesting that environmental intervention was sufficient to reverse the negative consequences of adult social isolation.

The new paper, together with a report published earlier this year by another group showing myelin changes triggered by social isolation early in life will broaden investigations into brain plasticity, says David Dietz, PhD, one of the paper's co-authors, an assistant professor of pharmacology and toxicology at UB.

In addition, adds Karen Dietz, the work has implications for future questions regarding MS and other myelin disorders. "This research suggests that maybe recovery from an MS episode might be enhanced by social interaction," she says. "This opens another avenue of investigation of how mood and myelin disorders may interact with one another."

Major funding for the research came from the National Institutes of Health.

Ellen Goldbaum | EurekAlert!
Further information:
http://www.buffalo.edu

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>