Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Forest Response Project FACEs the End

30.07.2009
After 12 years, an experiment focused on forest growth and climate change comes to an end, and researchers at Oak Ridge National Laboratory are eager to collect and analyze data to see if their predictions match results.

With the Department of Energy-sponsored free air carbon dioxide enrichment experiment, known as FACE, three plots of sweetgum trees were the control sites and two plots of sweetgums were exposed to increased carbon dioxide levels in the atmosphere at 550 parts per million, the concentration that is projected to occur in about 2050 if current trends continue.

The atmospheric carbon dioxide concentration has been rising steadily because of the burning of fossil fuels and global land use change.

Project leader Rich Norby of the Environmental Sciences Division describes the end of the experiment as bittersweet.

“In one sense, a project that I have been heavily involved in will no longer be an active experiment site,” Norby said. “On the other hand, I am looking forward to gathering the evidence and analyzing the materials to see if our hypotheses prove to be true.”

Already, researchers and students are sifting through the soil to measure the amount of fine roots and to examine them further. Smaller roots are significant points of study because they take up the majority of the water and nutrients and provide important clues to how forests will respond to higher carbon dioxide in the future.

This month, four to five trees per plot are being cut down for analysis. Throughout the experiment, researchers have measured the circumference and height, making projections about the weight of the tree, hypothesizing that increased carbon would lead to increased growth and thus a comparably higher mass. Now, researchers will actually be able to weigh the trees and compare the estimates to actual masses.

When considering how the forest stores carbon, trees are often assumed to store the most for the longest. Soil lives longer than trees, though, so some researchers see soil as a more obvious resource for storing carbon compared to wood.

Colleen Iversen, a post-doctoral researcher who wrote her dissertation on the FACE project, notes that the trees are cycling carbon through the forest ecosystem faster.

“We noticed that in the plots with increased carbon dioxide exposure, the trees are absorbing more carbon, but the trees are also releasing more carbon,” Iversen said. “What we are trying to understand is how much carbon is being cycled and how much is being stored.”

Even before the experiment officially ended, one hypothesis was confirmed when researchers saw that an increase in carbon dioxide leads to an increase in roots growing deeper into the ground.

In previous studies, the focus has been on trees absorbing carbon dioxide, but the FACE experiment gives some attention to the fate of carbon in roots and soil.

“The carbon dioxide fertilization effect will not solve the problem of climate change,” Norby said. “With this research, though, it has become obvious that the effect of carbon dioxide on tree growth needs to be part of the overall calculation of climate change.”

The FACE project has resulted in more than scientific advances. FACE has been the subject of five theses, several dozen publications and has presented academic opportunities for numerous undergraduate and graduate students and post-doctoral researchers. FACE collaborators have included Argonne National Laboratory, Purdue University, University of Illinois at Chicago and University of New South Wales in Australia.

Ultimately, the results that come from comparing the control sites with the elevated carbon dioxide sites will help improve the computer models that make projections of future climate.

UT-Battelle manages Oak Ridge National Laboratory for the Department of Energy.

Emma Macmillan | Newswise Science News
Further information:
http://www.ornl.gov

More articles from Studies and Analyses:

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Disarray in the brain
18.12.2017 | Universität zu Lübeck

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>