Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Forced evolution: Can we mutate viruses to death?

12.11.2008
Analysis reveals role of gene swaps in evolution of disease

It sounds like a science fiction movie: A killer contagion threatens the Earth, but scientists save the day with a designer drug that forces the virus to mutate itself out of existence. The killer disease? Still a fiction. The drug? It could become a reality thanks to a new study by Rice University bioengineers.

The study, which is available online and slated for publication in the journal Physical Review E, offers the most comprehensive mathematical analysis to date of the mechanisms that drive evolution in viruses and bacteria. Rather than focusing solely on random genetic mutations, as past analyses have, the study predicts exactly how evolution is affected by the exchange of entire genes and sets of genes.

"We wanted to focus more attention on the roles that recombination and horizontal gene transfer play in the evolution of viruses and bacteria," said bioengineer Michael Deem, the study's lead researcher. "So, we incorporated both into the leading models that are used to describe bacterial and viral evolution, and we derived exact solutions to the models."

The upshot is a newer, composite formula that more accurately captures what happens in real world evolution. Deem's co-authors on the study include Rice graduate student Enrique Muñoz and longtime collaborator Jeong-Man Park, a physicist at the Catholic University of Korea in Bucheon.

In describing the new model, Deem drew an analogy to thermodynamics and discussed how a geneticist or drug designer could use the new formula in much the same way that an engineer might use thermodynamics formulas.

"Some of the properties that describe water are density, pressure and temperature," said Deem. "If you know any two of them, then you can predict any other one using thermodynamics.

"That's what we're doing here," he said. "If you know the recombination rate, mutation rate and fitness function, our formula can analytically predict the properties of the system. So, if you have recombination at a certain frequency, I can say exactly how much that helps or hurts the fitness of the population."

Deem, Rice's John W. Cox Professor in Biochemical and Genetic Engineering and professor of physics and astronomy, said the new model helps to better describe the evolutionary processes that occur in the real world, and it could be useful for doctors, drug designers and others who study how diseases evolve and how our immune systems react to that evolution.

One idea that was proposed about five years ago is "lethal mutagenesis." In a nutshell, the idea is to design drugs that speed up the mutation rates of viruses and push them beyond a threshold called a "phase transition." The thermodynamic analogy for this transition is the freezing or melting of water -- which amounts to a physical transition between water's liquid and solid phases.

"Water goes from a liquid to a solid at zero degrees Celsius under standard pressure, and you can represent that mathematically using thermodynamics," Deem said. "In our model, there's also a phase transition. If the mutation, recombination or horizontal gene transfer rates are too high, the system delocalizes and gets spread all over sequence space."

Deem said the new results predict which parameter values will lead to this delocalization.

A competing theory is that a mutagenesis drug may eradicate a virus or bacterial population by reducing the fitness to negative values. The new mathematical results allow calculation of this mechanism when the fitness function and the mutation, recombination and horizontal gene transfer rates are known.

Without theoretical tools like the new model, drug designers looking to create pills to induce lethal mutagenesis couldn't say for certain under what parameter ranges the drugs really worked. Deem said the new formula should provide experimental drug testers with a clear picture of whether the drugs -- or something else -- causes mutagenesis.

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>