Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Foraging Behavior of Key Antarctic Predators Unchanged After Storms That Alter Prey Distribution

11.02.2009
Chinstrap penguins and fur seals showed persistent preferences for particular foraging areas even after a storm reduced the availability of food of choice in those areas, according to a study by Dr. Joseph Warren, Assistant Professor in the School of Marine and Atmospheric Sciences at Stony Brook University and colleagues, published in the January issue of Marine Biology.

Entitled, “Submesoscale distribution of Antarctic krill and its avian and pinniped predators before and after a near gale,” the team’s research shows that the spatial distribution of fur seals and foraging chinstrap penguins did not change after a near gale, despite substantial changes in the abundance and distribution of their prey, Antarctic krill.

“In order to better understand how energy moves through an ecosystem, we need to have a better understanding of how predator-prey interactions are affected by environmental conditions,” said Dr. Warren. “The storm that occurred between our two ship-based surveys created a perfect ‘natural experiment’ which allowed us to take ‘before’ and ‘after’ measurements and examine how the nearshore ecosystem north of Livingston Island Antarctica was affected by the winds and waves.”

Antarctic krill are 1-2 inches long crustaceans that play a critically important role in the ecosystem because so many other animals rely on krill as their primary food source. Dr. Warren and colleagues found that the storm reduced the concentration of krill in their study area to roughly half what it was before the storm, likely because currents pushed the krill off shore. They also observed that after the storm, krill were found in different geographic areas within the study site.

When Antarctic krill abundance decreased in certain areas after the storm, Dr. Warren and colleagues found that feeding aggregations of cape petrels, which are flying seabirds that eat krill, also decreased in those areas. However, other krill predators did not change their foraging behaviors in response to changes in krill distribution. Chinstrap penguins, which are swimming seabirds, and fur seals, which are marine mammals, both showed little change in their distribution after the storm.

“Relative to cape petrels, penguins and fur seals may not be as dependent on finding prey over small time scales due to their longer foraging-trip length and energy-storage capacity,” said Dr. Warren. “If the changes due to a storm are relatively short-lived, penguins and seals may not need to alter their habits and can stick to their familiar feeding areas.”

This research was funded by the National Science Foundation's Office of Polar Programs and the National Oceanic and Atmospheric Administration's Antarctic Marine Living Resources program. The study's co-authors are Jarrod A. Santora (City University of New York, now at the Farallon Institute for Advanced Ecosystem Research) and David A. Demer (NOAA, National Marine Fisheries Service, Southwest Fisheries Science Center).

About the School of Marine and Atmospheric Sciences at Stony Brook University
The School of Marine and Atmospheric Sciences (SoMAS) is the State University of New York's center for marine and atmospheric research, education, and public service. The expertise of SoMAS faculty places them in the forefront in addressing and answering questions about immediate regional problems, as well as long-term problems relating to the global oceans and atmosphere.

To view the complete study in the journal Marine Biology, contact Leslie Taylor, School of Marine and Atmospheric Sciences (SoMAS) Stony Brook University, leetaylor@notes.cc.sunysb.edu, 631.632.8621.

Leslie Taylor | Newswise Science News
Further information:
http://www.sunysb.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>