Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Football findings suggest concussions caused by series of hits

03.02.2012
A two-year study of high school football players suggests that concussions are likely caused by many hits over time and not from a single blow to the head, as commonly believed.
Purdue University researchers have studied football players for two seasons at Jefferson High School in Lafayette, Ind., where 21 players completed the study the first season and 24 the second season, including 16 repeating players.

Helmet-sensor impact data from each player were compared with brain-imaging scans and cognitive tests performed before, during and after each season.

"The most important implication of the new findings is the suggestion that a concussion is not just the result of a single blow, but it's really the totality of blows that took place over the season," said Eric Nauman, an associate professor of mechanical engineering and an expert in central nervous system and musculoskeletal trauma. "The one hit that brought on the concussion is arguably the straw that broke the camel's back."

Researchers evaluated players using a type of brain imaging technology called functional magnetic resonance imaging, or fMRI, along with a computer-based neurocognitive screening test. The fMRI scans reveal which parts of the brain are most active during specific tasks.

Thomas Talavage, an expert in functional neuroimaging and co-director of the Purdue MRI Facility, said the scans indicate players are adapting their mental processes to deal with brain changes.

"The changes in brain activity we are observing suggest that a player is having to use a different strategy to perform a task, and that is likely because functional capacity is reduced," Talavage said. "The level of change in the fMRI signal is significantly correlated to the number and distribution of hits that a player takes. Performance doesn't change, but brain activity changes, showing that certain areas are no longer being recruited to perform a task."

Findings, detailed in a paper to appear online in the Journal of Biomechanics, are contrary to conventional thinking.

"Most clinicians would say that if you don't have any concussion symptoms you have no problems," said Larry Leverenz, an expert in athletic training and a clinical professor of health and kinesiology. "However, we are finding that there is actually a lot of change, even when you don't have symptoms."

The paper was written by mechanical engineering graduate student Evan Breedlove, Nauman, Leverenz, Talavage, former Purdue professor of educational studies Jeffrey Gilger, biomedical engineering graduate student Meghan Robinson, health and kinesiology graduate student Katherine E. Morigaki, electrical and computer engineering graduate student Umit Yoruk, mechanical engineering undergraduate student Kyle O'Keefe, and undergraduate student in electrical and computer engineering Jeffrey King. Gilger is now a researcher at the University of California, Merced.

The research may help to determine how many blows it takes to cause impairment, which could lead to safety guidelines on limiting the number of hits a player receives per week.

"Any change in fMRI data is a concern, but we don't yet know what these changes mean, what they translate to, in terms of cognitive impairment," Breedlove said.
A common assumption in sports medicine is that certain people are innately more susceptible to head injury. However, the new findings suggest the number of hits received during the course of a season is the most important factor, Talavage said.

"Over the two seasons we had six concussed players, but 17 of the players showed brain changes even though they did not have concussions," Talavage said. "There is good correlation with the number of hits players received, but we need more subjects."

The researchers have expanded the study to include an additional high school football team and girls' soccer.

"We want to increase the number of football players in the study and also include soccer to study athletes who don't wear head protection," Nauman said. "We also want to include girls to see whether they are affected differently than boys."

The research findings represent a dilemma because they suggest athletes may suffer a form of injury that is difficult to diagnose.

"This might be especially important in young people because the brain is still developing, so even though subtle unexpressed damage doesn't manifest as a concussion it could affect the brain later in life," Gilger said.

Changes were seen in regions of the brain that have been associated with chronic traumatic encephalopathy (CTE), a progressive degenerative disease found in people who suffer numerous concussions and other forms of head injury.
"This is still circumstantial evidence, but it suggests that whether you are concussed or not your brain is changing as a result of all these hits, and the regions most affected are the ones that exhibit CTE," Nauman said.

Players in the study received from 200 to nearly 1,900 hits to the head in a single season, with two players exceeding 1,800 hits. Helmet-sensor data indicated impact forces to the head ranged from 20 Gs to more than 100 Gs.

"The worst hit we've seen was almost 300 Gs," Nauman said.
A soccer player "heading" a ball experiences an impact of about 20 Gs.

Findings could aid efforts to develop more sensitive and accurate methods to detect cognitive impairment and concussions; more accurately characterize and model cognitive deficits that result from head impacts; determine the cellular basis for cognitive deficits after a single impact or repeated impacts; and develop new interventions to reduce the risk and effects of head impacts.

"Now that we know there is definitely a buildup of damage before the concussion occurs, ultimately, there is hope that we can do more to prevent concussions," Nauman said.
The work is ongoing and supported with grants from the Indiana State Department of Health's Spinal Cord and Brain Injury Research Fund, General Electric Healthcare, the Indiana Clinical and Translational Sciences Institute, and through the National Science Foundation and National Defense Science and Engineering Graduate Fellowships.

Researchers also will follow the case studies of players who take the most hits to see if there is evidence of permanent changes in brain structure using MRI scans.

The research group, called the Purdue Neurotrauma Group (PNG), also is studying ways to reduce traumatic brain injury in soldiers who suffer concussions caused by shock waves from explosions.

Writer: Emil Venere, 765-494-4709, venere@purdue.edu
Sources: Eric Nauman, 765-494-8602, enauman@purdue.eduv

Larry J. Leverenz, 765-494-3167, llevere@purdue.eduv

Thomas M. Talavage, 765-494-5475, tmt@ecn.purdue.eduv

Note to Journalists: Video B-roll, sound bites and a package are available from Jim Schenke, Purdue News Service, at 765-237-7296, jschenke@purdue.edu

Emil Venere | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>