Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Food for thought, er, well...

21.09.2010
CWRU study finds brain wolfs energy to stop thinking

Ever wonder why it's such an effort to forget about work while on vacation or to silence that annoying song that's playing over and over in your head?

Mathematicians at Case Western Reserve University may have part of the answer.

They've found that just as thinking burns energy, stopping a thought burns energy - like stopping a truck on a downhill slope.

"Maybe this explains why it is so tiring to relax and think about nothing," said Daniela Calvetti, professor of mathematics, and one of the authors of a new brain study. Their work is published in an advanced online publication of Journal of Cerebral Blood Flow & Metabolism.

Opening up the brain for detailed monitoring isn't practical. So, to understand energy usage, Calvetti teamed with Erkki Somersalo, professor of mathematics, and Rossana Occhipinti, who used this work to help earn a PhD in math last year and is now a postdoctoral researcher in the department of physiology and biophysics at the Case Western Reserve School of Medicine. They developed equations and statistics and built a computer model of brain metabolism.

The computer simulations for this study were obtained by using Metabolica, a software package that Calvetti and Somersalo have designed to study complex metabolic systems. The software produces a numeric rendering of the pathways linking excitatory neurons that transmit thought or inhibitory neurons that put on the brakes with star-like brain cells called astrocytes. Astrocytes cater essential chemicals and functions to both kinds of neurons.

To stop a thought, the brain uses inhibitory neurons to prevent excitatory neurons from passing information from one to another.

"The inhibitory neurons are like a priest saying, 'Don't do it,'" Calvetti said. The "priest neurons" block information by releasing gamma aminobutyric acid, commonly called GABA, which counteracts the effect of the neurotransmitter glutamate by excitatory neurons.

Glutamate opens the synaptic gates. GABA holds the gates closed.

"The astrocytes, which are the Cinderellas of the brain, consume large amounts of oxygen mopping up and recycling the GABA and the glutamate, which is a neurotoxin," Somersalo said.

More oxygen requires more blood flow, although the connection between cerebral metabolism and hemodynamics is not fully understood yet.

All together, "It's a surprising expense to keep inhibition on," he said.

The group plans to more closely compare energy use of excitatory and inhibitory neurons by running simultaneous simulations of both processes.

The researchers are plumbing basic science but their goal is to help solve human problems.

Brain disease or damaging conditions are often difficult to diagnose until advanced stages. Most brain maladies, however, are linked to energy metabolism and understanding what is the norm may enable doctors to detect problems earlier.

The toll inhibition takes may, in particular, be relevant to neurodegenerative diseases. "And that is truly exciting" Calvetti said.

Their paper can be found at: http://www.nature.com/jcbfm/journal/vaop/ncurrent/full/jcbfm2010107a.html

Metabolica, which is a software package designed for the study of complex metabolic systems, is free and open to researchers online.

Kevin Mayhood | EurekAlert!
Further information:
http://www.case.edu

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>