Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

fMRIs reveal brain's handling of low-priority ideas

11.02.2010
When we put an idea on the back burner, it goes into a processing area of the brain called the default-mode network. This network enables us to hold the low-priority idea in abeyance until a time when we aren't busy with something else.

"The default-mode network appears to be the brain's back burner for social decision making," said Peter T. Fox, M.D., director of the Research Imaging Institute at The University of Texas Health Science Center at San Antonio. "Usually these back-burner ideas relate to interpersonal interactions and decisions that can't readily be quantified and shouldn't be rushed."

Dr. Fox likened this to putting a computer batch job into background processing to wait until the system is less busy.

Role of genetics

A recently released study from the Research Imaging Institute, the Southwest Foundation for Biomedical Research and other institutions offers evidence that genetics plays a role in this back-burner setup, which has been shown to be abnormal in a variety of psychiatric disorders.

The work was described in the Jan. 18-22 online edition of Proceedings of the National Academy of Sciences (PNAS).

The default-mode network is one of several neural networks that operate whether the mind is at rest or is occupied doing a task. A separate PNAS paper, published in 2009 by Dr. Fox and the same collaborators, presented a strong case that all human behaviors may be properly viewed as cooperative interactions among these networks, Dr. Fox said.

Maps

The newer research estimated the importance of genetic effects on the default-mode network by creating maps of eight anatomically distinct regions within the network. These maps were obtained by functional magnetic resonance imaging (fMRI) studies in 333 individuals from 29 randomly selected, extended-family pedigrees.

Network connectivity and gray-matter density were correlated to genetic factors. "We found that more than 40 percent of the between-subject variance in functional connectivity within the default-mode network was under genetic control," Dr. Fox said.

Based on this information, it is possible new diagnostic tools could be considered for various psychiatric or neurological illnesses, he said.

The study also included collaborators from the Yale University School of Medicine, the University of Oxford in Oxford, U.K., and Imperial College in London, U.K. The project is an outgrowth of longstanding collaborations between the UT Health Science Center and the Southwest Foundation for Biomedical Research using tools for gene discovery. It is also a result of substantial collaborations between the Research Imaging Institute and Oxford to develop novel applications of imaging methods.

Future directions

"One long-term research goal is to test whether other intrinsically connected networks are also under genetic control, which we expect they will be," Dr. Fox said. "We also want to identify the genes that are controlling the default-mode network and other networks, and identify disorders associated with their abnormalities. A final goal is to develop treatment strategies."

Other UT Health Science Center co-authors are Rene Olvera, M.D., M.P.H., of the Department of Psychiatry in the School of Medicine, and Peter Kochunov, Ph.D., and Angela Laird, Ph.D., of the Research Imaging Institute.

The University of Texas Health Science Center at San Antonio, one of the country's leading health sciences universities, ranks in the top 2 percent of all U.S. institutions receiving federal funding. Research and other sponsored program activity totaled a record $259 million in fiscal year 2009. The university's schools of medicine, nursing, dentistry, health professions and graduate biomedical sciences have produced 27,000 graduates. The $753 million operating budget supports six campuses in San Antonio, Laredo, Harlingen and Edinburg. For more information on the many ways "We make lives better®," visit http://www.uthscsa.edu.

Will Sansom | EurekAlert!
Further information:
http://www.uthscsa.edu

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>