Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

fMRIs reveal brain's handling of low-priority ideas

11.02.2010
When we put an idea on the back burner, it goes into a processing area of the brain called the default-mode network. This network enables us to hold the low-priority idea in abeyance until a time when we aren't busy with something else.

"The default-mode network appears to be the brain's back burner for social decision making," said Peter T. Fox, M.D., director of the Research Imaging Institute at The University of Texas Health Science Center at San Antonio. "Usually these back-burner ideas relate to interpersonal interactions and decisions that can't readily be quantified and shouldn't be rushed."

Dr. Fox likened this to putting a computer batch job into background processing to wait until the system is less busy.

Role of genetics

A recently released study from the Research Imaging Institute, the Southwest Foundation for Biomedical Research and other institutions offers evidence that genetics plays a role in this back-burner setup, which has been shown to be abnormal in a variety of psychiatric disorders.

The work was described in the Jan. 18-22 online edition of Proceedings of the National Academy of Sciences (PNAS).

The default-mode network is one of several neural networks that operate whether the mind is at rest or is occupied doing a task. A separate PNAS paper, published in 2009 by Dr. Fox and the same collaborators, presented a strong case that all human behaviors may be properly viewed as cooperative interactions among these networks, Dr. Fox said.

Maps

The newer research estimated the importance of genetic effects on the default-mode network by creating maps of eight anatomically distinct regions within the network. These maps were obtained by functional magnetic resonance imaging (fMRI) studies in 333 individuals from 29 randomly selected, extended-family pedigrees.

Network connectivity and gray-matter density were correlated to genetic factors. "We found that more than 40 percent of the between-subject variance in functional connectivity within the default-mode network was under genetic control," Dr. Fox said.

Based on this information, it is possible new diagnostic tools could be considered for various psychiatric or neurological illnesses, he said.

The study also included collaborators from the Yale University School of Medicine, the University of Oxford in Oxford, U.K., and Imperial College in London, U.K. The project is an outgrowth of longstanding collaborations between the UT Health Science Center and the Southwest Foundation for Biomedical Research using tools for gene discovery. It is also a result of substantial collaborations between the Research Imaging Institute and Oxford to develop novel applications of imaging methods.

Future directions

"One long-term research goal is to test whether other intrinsically connected networks are also under genetic control, which we expect they will be," Dr. Fox said. "We also want to identify the genes that are controlling the default-mode network and other networks, and identify disorders associated with their abnormalities. A final goal is to develop treatment strategies."

Other UT Health Science Center co-authors are Rene Olvera, M.D., M.P.H., of the Department of Psychiatry in the School of Medicine, and Peter Kochunov, Ph.D., and Angela Laird, Ph.D., of the Research Imaging Institute.

The University of Texas Health Science Center at San Antonio, one of the country's leading health sciences universities, ranks in the top 2 percent of all U.S. institutions receiving federal funding. Research and other sponsored program activity totaled a record $259 million in fiscal year 2009. The university's schools of medicine, nursing, dentistry, health professions and graduate biomedical sciences have produced 27,000 graduates. The $753 million operating budget supports six campuses in San Antonio, Laredo, Harlingen and Edinburg. For more information on the many ways "We make lives better®," visit http://www.uthscsa.edu.

Will Sansom | EurekAlert!
Further information:
http://www.uthscsa.edu

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>