Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flu virus foiled again

02.03.2009
Second research team finds same common Achilles' heel in seasonal and pandemic flu viruses

WHAT: Researchers at The Scripps Research Institute in La Jolla, California, supported in part by the National Institutes of Health, have identified a common Achilles' heel in a wide range of seasonal and pandemic influenza A viruses.

The study found an infection-fighting protein, or human antibody, that neutralizes various influenza A virus subtypes by attaching to these viruses in the same place. This common attachment site provides a constant region of the flu virus for scientists to target in an effort to develop a so-called universal flu vaccine. Such a vaccine would overcome the annual struggle to make the seasonal flu vaccine match next year's circulating flu strains and might help blunt emerging pandemic influenza viruses as well.

The study provides data about the antibody attachment site that are similar to the findings of another research group, reported on February 22, 2009 (see http://www3.niaid.nih.gov/news/newsreleases/2009/flu_mab.htm). Taken together, these studies provide a blueprint for efforts to develop new antiviral drugs as well as a potential universal influenza vaccine.

The Scripps research team, led by Ian A. Wilson, Ph.D., in collaboration with researchers at the biopharmaceutical company Crucell Holland (The Netherlands), discovered the potent antibody during a systematic examination of blood samples taken from healthy individuals who previously had been vaccinated with the ordinary seasonal flu vaccine. Using sophisticated screening technologies, the scientific team isolated antibodies that recognize flu viruses to which the average person has never been exposed, such as H5N1 avian flu viruses. Through this process, the scientists found one antibody called CR6261 that had broad neutralizing capabilities.

Subsequently, they found several antibodies similar to CR6261 in other donors as well. With the help of a robotic crystallization laboratory, the Scripps team quickly determined the detailed three-dimensional structures of this antibody when bound to the H1 virus that caused the 1918 pandemic flu as well as to an H5 virus with pandemic potential. CR6261 bound to a relatively hidden part in the stem below the mushroom-shaped head of the hemagglutinin protein, one of two major surface proteins found on the flu virus.

Laurie K. Doepel | EurekAlert!
Further information:
http://www.niaid.nih.gov

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>