Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Flu virus foiled again

Second research team finds same common Achilles' heel in seasonal and pandemic flu viruses

WHAT: Researchers at The Scripps Research Institute in La Jolla, California, supported in part by the National Institutes of Health, have identified a common Achilles' heel in a wide range of seasonal and pandemic influenza A viruses.

The study found an infection-fighting protein, or human antibody, that neutralizes various influenza A virus subtypes by attaching to these viruses in the same place. This common attachment site provides a constant region of the flu virus for scientists to target in an effort to develop a so-called universal flu vaccine. Such a vaccine would overcome the annual struggle to make the seasonal flu vaccine match next year's circulating flu strains and might help blunt emerging pandemic influenza viruses as well.

The study provides data about the antibody attachment site that are similar to the findings of another research group, reported on February 22, 2009 (see Taken together, these studies provide a blueprint for efforts to develop new antiviral drugs as well as a potential universal influenza vaccine.

The Scripps research team, led by Ian A. Wilson, Ph.D., in collaboration with researchers at the biopharmaceutical company Crucell Holland (The Netherlands), discovered the potent antibody during a systematic examination of blood samples taken from healthy individuals who previously had been vaccinated with the ordinary seasonal flu vaccine. Using sophisticated screening technologies, the scientific team isolated antibodies that recognize flu viruses to which the average person has never been exposed, such as H5N1 avian flu viruses. Through this process, the scientists found one antibody called CR6261 that had broad neutralizing capabilities.

Subsequently, they found several antibodies similar to CR6261 in other donors as well. With the help of a robotic crystallization laboratory, the Scripps team quickly determined the detailed three-dimensional structures of this antibody when bound to the H1 virus that caused the 1918 pandemic flu as well as to an H5 virus with pandemic potential. CR6261 bound to a relatively hidden part in the stem below the mushroom-shaped head of the hemagglutinin protein, one of two major surface proteins found on the flu virus.

Laurie K. Doepel | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>