Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flexible Soil Model Maps Remote Areas

24.08.2009
Soil scientists often face the dilemma of wishing to study soil in remote areas because they are ideal places to study soil formation and distribution under natural conditions, but mapping them requires a huge investment of time and resources. Computer-based models offer an efficient alternative. Researchers used ArcGIS geodatabase software to develop the Remote Area Soil Proxy (RASP) modeling technique to predict natural occurrence of soils in remote areas.

Bruce Frazier and Richard Rupp of Washington State University and Toby Rodgers and Crystal Briggs of Soil Survey conducted this work in the Pasayten River watershed in north-central Washington. Their results are reported in the summer issue of Soil Survey Horizons. Data were collected from dominant landscape facets accessible by or near trails, and soil formation was modeled using surrogates for the soil forming factors.

This technique requires an understanding of the soil forming processes occurring that the model must predict. In this case, four processes where identified as most important: podzolization (the process by which soils are depleted of bases and become acidic), andisolization (the rapid weathering of volcanic glass with formation of allophane, ferrihydrite, and imogolite), the prevention of the first two processes by erosion and unstable slopes, and continual wetness. Additional data related to vegetation, terrain attributes, hydrology, and parent materials were added to the model.

Twenty-two soil map unit complexes representing the diversity of the area were identified and found to match well with adjoining surveys using National Cooperative Soil Survey correlation procedures, reaching 75% accuracy at sampled pedon description sites within the watershed. The procedures developed in this modeling effort are new to soil survey and will benefit efforts in remote areas. Additionally, the model can be updated as new theories of soil formation are formulated, or as new data become available.

This featured article of SSH is available for free access at https://www.soils.org/publications/soil-survey-horizons/ until the next quarterly issue.

Soil Survey Horizons, https://www.soils.org/publications/soil-survey-horizons/, is a medium for expressing ideas, problems, and philosophies concerning the study of soils in the field. Articles include research updates, soil news, history of soil survey, and personal essays from the lives of soil scientists. Soil Survey Horizons is published by the Soil Science Society of America.

The Soil Science Society of America (SSSA) is a progressive, international scientific society that fosters the transfer of knowledge and practices to sustain global soils. Based in Madison, WI, and founded in 1936, SSSA is the professional home for 6,000+ members dedicated to advancing the field of soil science. It provides information about soils in relation to crop production, environmental quality, ecosystem sustainability, bioremediation, waste management, recycling, and wise land use.

SSSA supports its members by providing quality research-based publications, educational programs, certifications, and science policy initiatives via a Washington, DC, office. For more information, visit www.soils.org.

SSSA is the founding sponsor of an approximately 5,000-square foot exhibition, Dig It! The Secrets of Soil, which opened July 19, 2008 at the Smithsonian's National Museum of Natural History in Washington, DC.

Sara Uttech | Newswise Science News
Further information:
http://www.soils.org

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>