Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

One flash of light: Artificial light at night disrupts cell division

12.04.2010
A new study from the University of Haifa has found that just one "pulse" of artificial light at night disrupts the circadian mode of cell division - one of the body's mechanisms that is damaged in the development of cancer.

Just one "pulse" of artificial light at night disrupts circadian cell division, reveals a new study carried out by Dr. Rachel Ben-Shlomo of the University of Haifa-Oranim Department of Environmental and Evolutionary Biology along with Prof. Charalambos P. Kyriacou of the University of Leicester.

"Damage to cell division is characteristic of cancer, and it is therefore important to understand the causes of this damage," notes Dr. Ben-Shlomo. The study has been published in the journal Cancer Genetics and Cytogenetics.

The current research was carried out by placing lab mice into an environment where they were exposed to light for 12 hours and dark for 12 hours. During the dark hours, one group of mice was given artificial light for one hour. Changes in the expression of genes in the rodents' brain cells were then examined.

Earlier studies that Dr. Ben-Shlomo carried out found that the cells' biological clock is affected, and in the present research she revealed that the mode of cell division is also harmed and that the transcription of a large number of genes is affected. She states that it is important to note that those genes showing changes in their expression included genes that are connected to the formation of cancer as well as genes that assist in the fight against cancer. "What is certain is that the natural division is affected," Dr. Ben-Shlomo clarifies.

This research joins earlier studies from the University of Haifa on the effects of exposure to artificial light at night.

For more details contact Rachel Feldman • Tel: +972-4-8288722

Amir Gilat, Ph.D.
Communications and Media Relations
University of Haifa
Tel: +972-4-8240092/4
press@univ.haifa.ac.il

Amir Gilat | University of Haifa
Further information:
http://www.haifa.ac.il
http://newmedia-eng.haifa.ac.il/?p=35#more-35

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Japanese researchers develop ultrathin, highly elastic skin display

19.02.2018 | Information Technology

Dispersal of Fish Eggs by Water Birds – Just a Myth?

19.02.2018 | Ecology, The Environment and Conservation

Studying mitosis' structure to understand the inside of cancer cells

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>