Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fishy consequences of transplanting trout, salmon, whitefishes

27.01.2011
Some fish do not respond well to relocation according to Heredity study

Not all trout are created equal. Those swimming up the streams of British Columbia might resemble their cousins from Quebec, yet their genetic makeup is regionally affected and has an impact on how they reproduce, grow and react to environmental stressors.

Such regional variance makes transplanting fish species – to bolster dwindling populations – tricky business. These are some of the findings of a compelling review published in Heredity, a journal from the Nature Publishing Group, which examined the adaptability of trout, salmon, charr, whitefishes and graylings across North America and Europe.

The investigation, which compared 93 wild and aquaculture fish populations, was led by Concordia University in collaboration with Simon Fraser University, the Université Laval and the University of British Columbia in Canada and Aarhus University in Denmark.

"We can't treat a species as something that is homogeneous throughout its range. Fish of the same kind are distinct, whether they grow in lakes, ponds or streams," says first author Dylan J. Fraser, a Concordia University biology professor.

"A salmon from Quebec isn't the same as a salmon from the Atlantic provinces or an individual of the same species from Europe," he continues. "There's considerable variation within species. That genetic diversity can allow a specific type of fish to thrive in one region – to better adapt to stressors such as climate change or habitat changes – while fish stocks of the same species introduced from another region can dwindle."

Economic implications

Since trout, salmon, charr, whitefishes and graylings are important for commercial fishing, recreational fishing and aquaculture industries, Fraser says this review has economic implications for business or conservation programs looking to transplant species into new habitats for a variety of purposes.

"Salmon from Quebec, for instance, should not be reintroduced into British Columbia streams," says Fraser. "For fish to successfully adapt to a new environment, they should be selected by geographic proximity."

Natural selection is what drives local adaptation of fish stocks. "Natural selection may have favored faster growth in certain populations," he says. "If these same populations can also deal with higher temperatures, they may be better suited for new aquaculture initiatives in the face of climate change. This is another benefit of considering local adaptation."

The research team examined other factors that caused fish stocks to thrive or abate: environmental factors, temperature, geology, water chemistry, migration distance, pathogens, parasites, prey and predators.

The result? "Climate change will have a profound effect on species," says Fraser. "And understanding why local populations outperform foreign populations in their home environment may help to predict which populations within species are most likely to persist in the future.'"

Partners in research:

This study was funded by the Natural Sciences and Engineering Research Council of Canada and the Danish Natural Science Research Council.

About the study:

The paper, "Extent and scale of local adaptation in salmonid fishes: review and meta-analysis," published in Heredity, was authored by Dylan J. Fraser of Concordia University, Laura Weir of Simon Fraser University, Louis Bernatchez of the Université Laval and Eric Taylor of the University of British Columbia in Canada, and Michael M. Hansen of Aarhus University in Denmark.

Related links:

Cited study from Heredity: http://www.nature.com/hdy/journal/vaop/ncurrent/full/hdy2010167a.html
Concordia Department of Biology: http://clone.concordia.ca/bioweb
Dylan Fraser's website: www.dylanfraser.com
Media contact:
Sylvain-Jacques Desjardins
Senior advisor, media relations
University Communications Services
Concordia University
Phone: 514-848-2424, ext. 5068
Email: s-j.desjardins@concordia.ca
Twitter: http://twitter.com/concordianews
Concordia news: http://now.concordia.ca

Sylvain-Jacques Desjardins | EurekAlert!
Further information:
http://www.concordia.ca

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>