Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fishdunnit! Mystery Solved

19.01.2009
Fish Physiology, Marine Chemistry, Oceanography and Modeling Experts Join Forces to Unlock CO2 Conundrum

An international team of scientists has solved a mystery that has puzzled marine chemists for decades. They have discovered that fish contribute a significant fraction of the oceans’ calcium carbonate production, which affects the delicate pH balance of seawater. The study gives a conservative estimate of three to 15 percent of marine calcium carbonate being produced by fish, but the researchers believe it could be up to three times higher.

Published January 16th in Science, their findings highlight how little is known about some aspects of the marine carbon cycle, which is undergoing rapid change as a result of global CO2 emissions.

Until now, scientists believed that the oceans’ calcium carbonate, which dissolves in deep waters making seawater more alkaline, came from marine plankton. The recent findings published in Science explain how up to 15 percent of these carbonates are, in fact, excreted by fish that continuously drink calcium-rich seawater. The ocean becomes more alkaline at much shallower depths than prior knowledge of carbonate chemistry would suggest which has puzzled oceanographers for decades. The new findings of fish-produced calcium carbonate provides an explanation: fish produce more soluble forms of calcium carbonate, which probably dissolve more rapidly, before they sink into the deep ocean.

Corresponding authors Drs. Frank Millero and Martin Grosell at the University of Miami’s Rosenstiel School of Marine and Atmospheric Science and Dr. Rod Wilson of the University of Exeter note that given current concerns about the acidification of our seas through global CO2 emissions, it is more important than ever that we understand how the pH balance of the sea is maintained. Although we know that fish carbonates differ considerably in their chemical make-up, the team has really only just scratched the surface regarding their chemical nature and ultimate fate in the ocean. Scientists clearly need to investigate this further to understand what this means for the future health of the world’s oceans.

Millero, Grosell and Wilson, who was the recipient of the University of Miami’s prestigious 2005 Rosenstiel Award, along with Rosenstiel School Marine Biology and Fisheries graduate student Josi Taylor collaborated with other British and Canadian scientists to reach the conclusion published in the current issue of Science.

The researchers suggest that fish carbonates dissolve much faster than those produced by plankton, and at depths of less than 1,000 m. Less soluble carbonates, produced by plankton, are more likely to sink further and become locked up in sediments and rocks for tens or hundreds of millions of years before being released. Fish carbonates, on the other hand, are likely to form part of the ‘fast’ carbonate system by more rapidly dissolving into seawater.

“As a marine chemist who has been studying the global carbon cycle and its impacts on the pH of the water and marine ecosystems for 40+ years, these results offer an important piece of the equation,” said Millero, professor of Marine and Atmospheric Chemistry at the Rosenstiel School. “By working with scientists in several disciplines we were able to come at this from different perspectives and combine data sets that hadn’t been previously used together, to solve this problem. We can now employ the knowledge gained from this study to examine how ocean acidification due to the adsorption of CO2 from the burning of fossil fuels affects the ocean carbon system.”

The combination of future increases in sea temperature and rising CO2 will cause fish to produce even more calcium carbonate, which is in sharp contrast to the response by most other calcium carbonate producing organisms. Fish’s metabolic rates are known to increase in warmer waters, and this study explains how this will also accelerate the rate of carbonate excretion. In addition, our existing knowledge of fish biology shows that blood CO2 levels rise as CO2 increases in seawater and that this in turn will further stimulate fish calcium carbonate production.

“Depletion of fish stocks due to overfishing will obviously influence global calcium carbonate production attributable to fish, but the prediction of the impact of overexploitation is complex. Smaller fish which often result from exploitation produce more calcium carbonate for the same unit of biomass than bigger fish, a simple consequence of higher mass-specific metabolic rates in the smaller animals. In addition, the chemical nature of the calcium carbonate produced by fish, which determines solubility, almost certainly will depend on temperature, fish species, ambient pH and CO2 levels among other factors. The influence of such factors on this newly recognized and significant contribution to oceanic carbon cycling offers an exciting challenge for further study” said Grosell, associate professor of Marine Biology and Fisheries at the Rosenstiel School.

This study was carried out by the University of Exeter (UK), University of Miami (USA), University of Ottawa (Canada), University of British Columbia (Canada), Centre for Environment, Fisheries and Aquaculture Science (UK) and University of East Anglia (UK). The research was supported by the Biotechnology and Biological Sciences Research Council (BBSRC) and the Natural Science Foundation.

Barbra Gonzalez | RSMAS MIAMI
Further information:
http://www.rsmas.miami.edu
http://www.umiami.edu

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>