Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fish near coal-fired power plants have lower levels of mercury

06.10.2010
A new study from North Carolina State University finds that fish located near coal-fired power plants have lower levels of mercury than fish that live much further away. The surprising finding appears to be linked to high levels of another chemical, selenium, found near such facilities, which unfortunately poses problems of its own.

"We found that fish in lakes located at least 30 kilometers (km) from a coal-fired power plant had mercury levels more than three times higher than fish of the same species in lakes that are within 10 km of a plant," says Dana Sackett, a Ph.D. student at NC State and the lead author of a paper describing the study. "This information will inform health and wildlife officials who make determinations about fish consumption advisories and wildlife management decisions."

The findings are surprising because coal-fired power plants are the leading source of mercury air emissions globally, and a significant amount of that mercury is expected to settle out of the air within 10 km of a plant's smokestacks. Mercury is a bioaccumulative toxin that builds up in animal tissues – including fish – and can pose public health problems related to fish consumption.

The researchers examined largemouth bass and bluegill from 14 freshwater lakes – seven within 10 km of a plant and seven that were a minimum of 30 km from a plant. The species were chosen because they are commonly caught and eaten by recreational anglers, and because they represent two very different places in the food chain. Largemouth bass are apex predators at the top of the food chain, which consume smaller fish. As a result, since mercury builds up in the food chain, they would be expected to show higher levels of mercury. Bluegill are smaller fish that primarily dine on invertebrates, such as insects, and would be expected to show lower levels of mercury.

The researchers found that the mercury levels went up more than threefold in both species at lakes located further from the power plants, meaning that the location effect impacts fish regardless of their place in the food chain.

The researchers think that the lower mercury levels near power plants are likely linked to selenium levels. Fish tissue samples taken within 10 km of a coal-fired power plant showed selenium levels three times higher than samples taken from fish located further away. This shows an inverse relationship to the mercury levels – the higher the selenium level, the lower the mercury level.

Selenium, which is also emitted by coal-fired plants, is known to have an antagonistic relationship to mercury, though the specific mechanisms at play are not clearly defined. In other words, the selenium prevents fish from accumulating high levels of mercury, and we're still working on the specifics of how that happens.

However, while lower mercury levels are a good thing, higher levels of selenium pose their own risks. "Selenium is an important dietary element," says Dr. Derek Aday, associate professor of biology at NC State and a co-author of the paper. "But at high levels, it can have serious consequences – including lethal effects and an array of health problems for fish and wildlife."

The research was funded by the Water Resources Research Institute. The paper, "Does proximity to coal-fired power plants influence fish tissue mercury?," will be published in a forthcoming issue of the journal Ecotoxicology. The paper was co-authored by Sackett, Aday, Dr. James Rice, professor of biology at NC State, Dr. Gregory Cope, professor of toxicology at NC State, and Dr. David Buchwalter, assistant professor of toxicology at NC State.

Matt Shipman | EurekAlert!
Further information:
http://www.ncsu.edu

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>