Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fish near coal-fired power plants have lower levels of mercury

06.10.2010
A new study from North Carolina State University finds that fish located near coal-fired power plants have lower levels of mercury than fish that live much further away. The surprising finding appears to be linked to high levels of another chemical, selenium, found near such facilities, which unfortunately poses problems of its own.

"We found that fish in lakes located at least 30 kilometers (km) from a coal-fired power plant had mercury levels more than three times higher than fish of the same species in lakes that are within 10 km of a plant," says Dana Sackett, a Ph.D. student at NC State and the lead author of a paper describing the study. "This information will inform health and wildlife officials who make determinations about fish consumption advisories and wildlife management decisions."

The findings are surprising because coal-fired power plants are the leading source of mercury air emissions globally, and a significant amount of that mercury is expected to settle out of the air within 10 km of a plant's smokestacks. Mercury is a bioaccumulative toxin that builds up in animal tissues – including fish – and can pose public health problems related to fish consumption.

The researchers examined largemouth bass and bluegill from 14 freshwater lakes – seven within 10 km of a plant and seven that were a minimum of 30 km from a plant. The species were chosen because they are commonly caught and eaten by recreational anglers, and because they represent two very different places in the food chain. Largemouth bass are apex predators at the top of the food chain, which consume smaller fish. As a result, since mercury builds up in the food chain, they would be expected to show higher levels of mercury. Bluegill are smaller fish that primarily dine on invertebrates, such as insects, and would be expected to show lower levels of mercury.

The researchers found that the mercury levels went up more than threefold in both species at lakes located further from the power plants, meaning that the location effect impacts fish regardless of their place in the food chain.

The researchers think that the lower mercury levels near power plants are likely linked to selenium levels. Fish tissue samples taken within 10 km of a coal-fired power plant showed selenium levels three times higher than samples taken from fish located further away. This shows an inverse relationship to the mercury levels – the higher the selenium level, the lower the mercury level.

Selenium, which is also emitted by coal-fired plants, is known to have an antagonistic relationship to mercury, though the specific mechanisms at play are not clearly defined. In other words, the selenium prevents fish from accumulating high levels of mercury, and we're still working on the specifics of how that happens.

However, while lower mercury levels are a good thing, higher levels of selenium pose their own risks. "Selenium is an important dietary element," says Dr. Derek Aday, associate professor of biology at NC State and a co-author of the paper. "But at high levels, it can have serious consequences – including lethal effects and an array of health problems for fish and wildlife."

The research was funded by the Water Resources Research Institute. The paper, "Does proximity to coal-fired power plants influence fish tissue mercury?," will be published in a forthcoming issue of the journal Ecotoxicology. The paper was co-authored by Sackett, Aday, Dr. James Rice, professor of biology at NC State, Dr. Gregory Cope, professor of toxicology at NC State, and Dr. David Buchwalter, assistant professor of toxicology at NC State.

Matt Shipman | EurekAlert!
Further information:
http://www.ncsu.edu

More articles from Studies and Analyses:

nachricht First form of therapy for childhood dementia CLN2 developed
25.04.2018 | Universitätsklinikum Hamburg-Eppendorf

nachricht Do microplastics harbour additional risks by colonization with harmful bacteria?
05.04.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>