Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Firstborn, middle child, or last-born: Birth order has only very small effects on personality

20.10.2015

Who we become only marginally correlates with our birth position amongst siblings. Psychologists from the universities of Mainz and Leipzig, Germany, came to this conclusion in a study recently published in Proceedings of the National Academy of Sciences of the United States of America (PNAS).

The question of whether a person’s position among siblings has a lasting impact on personality has occupied scientist for more than 100 years. Laypeople as well a scientist share a number of beliefs: Firstborns are supposedly perfectionists, for example, while middle children develop a talent for diplomacy and last-borns are expected to be rebellious.

To shed some light on the so far inconsistent findings on whether these differences actually exist, Professor Stefan Schmukle and Julia Rohrer of Leipzig University and Professor Boris Egloff of Johannes Gutenberg University Mainz (JGU) analyzed the data of more than 20,000 grown-ups from Germany, the USA, and Great Britain.

They found that central personality traits such as extraversion, emotional stability, agreeableness, and conscientiousness are not affected by birth-order position. Only regarding self-reported intellect small effects were found: Firstborns were more likely to report a rich vocabulary and less difficulty understanding abstract ideas.

These self-reports are not completely unfounded as the study confirmed the already known small decline in objectively measured intelligence from first- to last-born. "This effect on intelligence replicates very well in large samples, but it is barely meaningful on the individual level, because it is extremely small. And even though mean scores on intelligence decline, in four out of ten cases the later-born is still smarter than his or her older sibling," explained Schnukle.

"The real news of our study is that we found no substantial effects of birth order on any of the personality dimensions we examined. This does not only contradict prominent psychological theories, but also goes against the intuition of many people."

The study was made possible by multiple large longitudinal studies: the German Socio-Economic Panel (SOEP) of the German Institute for Economic Research, the National Longitudinal Survey of Youth (NLSY) of the U.S. Bureau of Labor Statistics, and the National Child Development Study (NCDS) at the Centre of Longitudinal Studies of the University of London.

Publication:
Julia M. Rohrer, Boris Egloff, and Stefan C. Schmukle
Examining the effects of birth order on personality
Proceedings of the National Academy of Sciences of the United States of America,
19 October 2015
DOI: 10.1073/pnas.1506451112

Contact:
Professor Dr. Stefan Schmukle
Institute of Psychology
Leipzig University
phone +49 341 9735902
e-mail: schmukle@uni-leipzig.de
http://home.uni-leipzig.de/diffdiag/pppd/?page_id=101

Julia Rohrer
Institute of Psychology
Leipzig University
phone +49 174-4736433
e-mail: julia.rohrer@uni-leipzig.de

Professor Dr. Boris Egloff
Institute of Psychology
Johannes Gutenberg University Mainz
phone +49 6131 39-39156
e-mail: egloff@uni-mainz.de
http://www.ppd.psychologie.uni-mainz.de/62.php (in German)

Weitere Informationen:

http://www.pnas.org/content/early/2015/10/14/1506451112.abstract

Susann Huster | Universität Leipzig

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>