Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First code improvements adopted based on NIST Joplin tornado study

08.12.2015

Protecting schools and their associated high-occupancy buildings from the most violent tornadoes is the goal of the first approved building code changes based on recommendations from the National Institute of Standards and Technology (NIST) technical investigation into the impacts of the deadly tornado that struck Joplin, Mo., on May 22, 2011.

The new changes, approved at a recent meeting of the International Code Council (ICC), apply to the nation's most tornado-prone regions. Enhanced protection will be required for new school buildings and additions to buildings on existing school campuses, as well as facilities associated with schools where people regularly assemble, such as a gymnasium, theater or community center.


The power of an EF-5 tornado is evident in this photo of a truck wrapped around a utility pole in the aftermath of a May 1999 twister in Oklahoma in which wind speeds of more than 500 kilometers (300 miles) per hour were recorded. New code changes based on recommendations from NIST's Joplin, Mo., tornado study will help protect building occupants in areas where such storms are most likely to occur.

Credit: National Severe Storms Laboratory, NOAA

Under the updated codes, storm shelters must be provided that protect all occupants from storms with wind speeds of 400 kilometers per hour (250 miles per hour), representing the maximum intensity category EF-5 on the Enhanced Fujita Scale.

The area covered by the upgraded codes stretches from northern Texas to central Minnesota and from western Oklahoma to western Pennsylvania. It includes the notorious "Tornado Alley" and "Dixie Alley" regions of the midwestern and southern United States, respectively.

The improved storm shelter requirements will be published in ICC's 2018 International Building Code (IBC) and 2018 International Existing Building Code (IEBC). These are the state-of-the-art model codes used as the basis for building and fire regulations promulgated and enforced by U.S. state and local jurisdictions.

Based on findings from its Joplin study, NIST developed 16 recommendations for improving how buildings and shelters are designed, constructed and maintained in tornado-prone regions, along with improving the emergency communications that warn of imminent threat from tornadoes.

According to Marc Levitan, leader of the NIST team that conducted the Joplin investigation, the new changes to the IBC and IEBC mark the first milestone of the collaborative effort to implement these recommendations.

"Solid progress is being made working with code developers, state and local officials, U.S. agencies such as the Federal Emergency Management Agency [FEMA] and others toward realizing all of the proposed improvements for tornado protection and resilience in our study," Levitan says.

Current efforts, he says, include developing:

  • More detailed and accurate tornado hazard maps for the United States (to support standards on performance-based, tornado-resilient building designs);
  • An improved Fujita scale based on advanced techniques for wind speed estimation; draft standards for better selecting buildings to serve as disaster shelters; and
  • Guidelines for determining the best available tornado refuge areas in existing buildings.

     

NIST's Joplin investigation team members also recently provided their expertise and insight to help FEMA improve guidance on public sheltering strategies and practices in its publication, FEMA P-361, Safe Rooms for Tornadoes and Hurricanes: Guidance for Community and Residential Safe Rooms, Third Edition.

Levitan and his colleagues will continue to work with their partners to realize the main goal of the Joplin investigation: nationally accepted standards for building design and construction, public shelters and emergency communications that can significantly reduce deaths and the steep economic costs of property damage caused by tornadoes.

Media Contact

Michael E. Newman
michael.newman@nist.gov
301-975-3025

 @usnistgov

http://www.nist.gov 

Michael E. Newman | EurekAlert!

Further reports about: IBC NIST Tornadoes emergency communications tornado study

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>