Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fire without smoke: Tracking down the most primitive black holes in the universe

18.03.2010
Astronomers have found what appear to be the two most primitive black holes in the universe.

Located at a distance of 12,7 billion light-years from Earth, we see these black holes or, more precisely, the bright galactic nuclei powered by these black holes, as they were 12,7 billion years ago, less than a billion years after the big bang. The existence of such primitive black holes had long been surmised, but until now, none had been observed. The results will be published in the March 18, 2010 issue of the journal Nature.


The Spitzer Space Telescope against an infrared sky (computer-generated image). With Spitzer\'s help, astronomers have now found the most primitive black holes in the universe. Credit: NASA / JPL-Caltech

Quasars are the core regions of galaxies which contain active black holes. Such black holes are surrounded by brightly glowing "accretion disks": disk of swirling matter that is spiraling towards the black hole. Such disks are among the brightest objects in the universe; in consequence, quasars are so bright that even at great distances, it is possible to investigate their physical properties in some detail.

It takes about 13 billion years for light from the most distant known quasars to reach us. In other words: We see these quasars as they were about 13 billion years ago, less than a billion years after the Big Bang. Looking that far into the past, one might expect to see half-formed, rather primitive precursors of more recent quasars. But in 2003, when the first of these very distant quasars were observed, researchers were greatly surprised to find that they were not markedly different in appearance from their modern kin.

Now a team of astronomers led by Linhua Jiang (University of Arizona, Tucson), which includes researchers from the Max Planck Institute for Astronomy in Heidelberg and the Max Planck Institute for Extraterrestrial Physics in Garching, has, for the first time, observed what appear to be very early, primitive quasars: quasars in an early stage of evolution, which are markedly different from quasars in the modern universe.

The astronomers used NASA's Spitzer Space Telescope to observe infrared light from those extremely distant quasars. With infrared observations, one can identify the signature of hot dust, which is a standard feature of modern quasars - in such quasars, the central glowing disk (which is comparable in size to our whole Solar System) is surrounded by a gigantic dust torus (which is about a thousand times larger). In two of the 20 quasars observed, the dust signature proved to be conspicuously absent. This suggested that these two quasars might be very primitive: The very early universe contained no dust at all, so the first stars and galaxies should have been dust-free. They should be intensely hot and radiate brightly, but contain no dust particles: fire without smoke. The existence of such low-dust or even dust-free quasars had long been surmised, but such objects had not been observed - until now.

Thoroughly examining all available data, the astronomers found that none of the quasars that are closer to Earth - so that we see them at a later stage of their evolution - come even close to being this dust-free. Also, they found that, for the very distant quasars, there is a strong correlation between the mass of the quasar's central black hole and the amount of dust present. This indicates an evolutionary process, in which the central black hole grows rapidly by swallowing up surrounding matter, while, at the same time, more and more hot dust is produced over time.

All available evidence points towards the conclusion that finally, astronomers have managed to see quasar evolution in action, and that the two dust-free quasars indeed represent the most primitive black hole systems we know: quasars at an early stage of their evolution, too young to have formed a detectable amount of dust around them.

Contact

Dr. Fabian Walter (Coauthor)
Max Planck Institute for Astronomy, Heidelberg, Germany
Phone: (0|+49) 6221 - 528 225
E-mail: walter@mpia.de
Background information
The results described here will be published as Jiang et al. "Dust-Free Quasars in the Early Universe" in the March 18, 2010 issue of Nature.

The team members are Linhua Jiang and Xiaohui Fan (University of Arizona, Tucson), W. N. Brandt (Pennsylvania State University), Chris L. Carilli (National Radio Astronomy Observatory, Socorro, New Mexico), Eiichi Egamii (University of Arizona, Tucson), Dean C. Hines (Space Science Institute, Boulder, Colorado), Jaron D. Kurk (Max Planck Institute for Extraterrestrial Physics, formerly Max Planck Institute for Astronomy), Gordon T. Richards (Drexel University, Philadelphia), Yue Shen (Harvard-Smithsonian Center for Astrophysics, Cambridge, MA), Michael A. Strauss (Princeton University, Princeton), Marianne Vestergaard (University of Arizona and Niels Bohr Institute, Copenhagen), and Fabian Walter (Max Planck Institute for Astronomy).

Parts of Xiaohui Fan's work were done when he was a long-term guest at the Max Planck Institute for Astronomy.

Dr. Markus Pössel | Max-Planck-Institut
Further information:
http://www.mpia.de

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>