Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Findings by GW Researcher Break Tanning Misconceptions: “There is no such thing as a safe tan”

24.07.2012
Nature Communications recently published GW research on skin melanoma with newly discovered role for UV and melanin using transgenic HGF melanoma mouse model
A new study conducted by GW School of Medicine and Health Sciences (SMHS) researchers Edward C. De Fabo, Ph.D., Frances P. Noonan, Ph.D., and Anastas Popratiloff, M.D., Ph.D., has been published in the journal Nature Communications. Their paper, entitled “Melanoma induction by ultraviolet A but not ultraviolet B radiation requires melanin pigment,” was published in June 2012.

“This is the first time that UV-induced melanin formation (tanning), traditionally thought to protect against skin cancer, is shown to be directly involved in melanoma formation in mammals,” said De Fabo, who is professor emeritus at SMHS. “Skin melanoma is the most lethal of the skin cancers. Our study shows that we were able to discover this new role for melanin by cleanly separating UVA from UVB and exposing our experimental melanoma animal model with these separated wavebands using our unique UV light system designed and set up at GW. Dermatologists have been warning for years there is no such thing as a safe tan and this new data appears to confirm this.”

Their research uses a mammalian model to investigate melanoma formed in response to precise spectrally defined ultraviolet wavelengths and biologically relevant doses. They show that melanoma induction by ultraviolet A (320–400 nm) requires the presence of melanin pigment and is associated with oxidative DNA damage within melanocytes. In contrast, ultraviolet B radiation (280–320 nm) initiates melanoma in a pigment-independent manner associated with direct ultraviolet B DNA damage. The researchers identified two ultraviolet wavelength-dependent pathways for the induction of CMM and the study describes an unexpected and significant role for melanin within the melanocyte in melanoma genesis.

“Also new is our discovery that UV induction of melanin, as a melanoma-causing agent, works when skin is exposed only to UVA and not UVB radiation. This is especially important since melanoma formation has been correlated with sunbed use as many epidemiological studies have shown. One possible reason for this is that tanning lamps are capable of emitting UVA radiation up to 12 times, or higher, the UVA intensity of sunlight at high noon. Melanin plus UVA is known to cause photo-oxidation, a suspected, but still to be proved, mechanism for the formation of melanoma as we describe in our study,” De Fabo said.

This grant was supported in part by grants from the National Cancer Institute (NCI) and the Melanoma Research Foundation. The melanoma mouse was developed in collaboration with G. Merlino, Ph.D, of NCI.

Read the full study online.
http://www.nature.com/ncomms/journal/v3/n6/full/ncomms1893.html

Lisa Anderson | EurekAlert!
Further information:
http://www.gwu.edu

Further reports about: Bird Communication DNA NCI SMHS Tanning UVB misconceptions skin cancer

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>