Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Financial risk taking: Blame it on the genes

11.02.2009
Financial institutions continue to teeter on the brink of ruin. Banks are still devouring bailout money without loosening credit enough to make a difference in a recession that is sweeping the globe. And everyone keeps asking, "How in the world did so many financial titans take such huge risks with our nation's well being?"

A new Northwestern University study provides provocative insights that relate to, if not answer, that extraordinarily complex question.

The study, for the first time, links specific variants of two genes that regulate dopamine and serotonin neurotransmission to risk-taking in financial investment decisions.

Northwestern students were given real money to make a series of investments, in each trial deciding how to allocate money between a risky and a risk-free asset.

People with the short serotonin transporter gene, 5-HTTLPR (two copies of the short allele), relative to those with the long version of that polymorphism (at least one copy of the long allele), invested 28 percent less in a risky investment. Similarly, people who carry the 7-repeat allele of the DRD4 gene in the dopamine family, relative to those carrying other versions of that gene, invested about 25 percent more in a risky investment.

"Our research pinpoints, for the first time, the roles that specific variants of the serotonin transporter gene and the dopamine receptor gene, play in predicting whether people are more or less likely to take financial risks," said Camelia M. Kuhnen, assistant professor of finance, Kellogg School of Management at Northwestern. "It shows that individual variability in our genetic makeup effects economic behavior."

"Genetic Determinants of Financial Risk Taking will be published online Wednesday, Feb. 11, by the open-access journal PLoS ONE. The study's co-investigators are Kuhnen and Joan Y. Chiao, assistant professor of psychology at Northwestern.

Prior research linking the two genetic variants of 5-HTTLPR and DRD4 to, respectively, negative emotion and addiction behaviors suggested to the Northwestern researchers that those particular brain mechanisms could play a role in financial risk-taking. But until the Northwestern study, the identification of specific genes underlying financial-risk preferences remained elusive.

The study included 65 subjects (26 of which were male, and the average age was 22 years). Study participants completed 96 computer trials in an experiment designed to give them background information with which to make decisions between pairs of risky and risk-free investments. They were told the sure rate of return for the risk-free asset and the two possible rates of return for the risky asset, which were equally likely to occur. Typically, the risk-free asset return was close to 3 percent, while the two possible outcomes of the risky asset return were, for example, 20 percent and -10 percent, respectively.

Participants initially were given $15, but received additional funds for each of the 96 investment decisions. They allocated their funds between the two assets in each trial, but were not told the performance of their portfolios (how much money they were making or losing) until the end of the exercise. The entire experiment took 1.5 hours to complete, and the average pay per subject was $25.

As predicted by finance theory, participants invested significantly more money in the risky asset if its expected return was higher, the standard deviation of its return was lower or if the return of the safe asset was lower. Also the higher the amount available to participants, the more money they invested in the risky asset.

Following the investment tasks, genotyping was conducted to identify the 5-HTTLPR and DRD4 polymorphisms. Investigators collected saliva from each participant, and DNA was isolated and genotyped.

The Northwestern researchers were able to take advantage of advances in neuroscience methodology as well as emerging research on the two neurotransmitters' effects on decision-making.

"Emerging research told us, for example, that people higher in neuroticism are thought to carry the short allele of the 5-HTTLPR, a less efficient version of the serotonin transporter gene," said Chiao. "Similarly, individuals with the 7-repeat allele of DRD4, relative to those with a other variants of that neurotransmitter, are more likely to have higher novelty seeking behavior."

The Northwestern study suggests that researchers are getting closer to pinpointing specific genetic mechanisms underlying complex social and economic behavior that has been a mystery -- including drug addiction, gambling and risk-taking.

"As we sort through the devastating consequences of this financial crisis, it might be useful to note how our genetic heritage is influencing our economic behavior," said Chiao. "Think about how the excessive risks taken by just a few affected so many, from large institutions to average people."

But, Kuhnen cautions, more research is needed to further understand investor behavior, given the complex influences of nature versus nurture on financial decisions. Less than 30 percent of variation across people in risk-taking comes from genetics. The rest comes from experience and upbringing.

"Keep in mind," Kuhnen said, "that risk-taking in the marketplace may be the result of the genetic makeup of traders and investors, their past experiences in the stock market or their cultural background."

Pat Vaughan Tremmel | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>