Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Go figure: Math model may help researchers with stem cell, cancer therapies

21.01.2011
The difficult task of sorting and counting prized stem cells and their cancer-causing cousins has long frustrated scientists looking for new ways to help people who have progressive diseases.

But in a development likely to delight math teachers, University of Florida researchers have devised a series of mathematical steps that accomplishes what the most powerful microscopes, high-throughput screening systems and protein assays have failed to do — assess how rapidly stem cells and their malignant, stemlike alter egos increase their numbers.

The method, published in the online journal PLoS ONE in January, may rev up efforts to develop stem cell therapies for Alzheimer's, Parkinson's and other diseases. It may also help get to the root of the cancer-stem cell theory, which puts forth the idea that a tiny percentage of loner cancer cells gives rise to tumors.

"Math is going to be the new microscope of the 21st century because it is going to allow us to see things in biology that we cannot see any other way," said Brent Reynolds, Ph.D., an associate professor of neurosurgery at UF's McKnight Brain Institute and a member of the UF Shands Cancer Center. "Stem cells and the cells that drive cancer may be as infrequent as one in 10,000 or one in 100,000 cells. The problem is how do you understand the biology of something whose frequency is so low?"

Inspired by a 2004 essay by Joel E. Cohen, Ph.D., of The Rockefeller University and Columbia University that described the explosive synergy between mathematics and biology, Reynolds and postdoctoral associate Loic P. Deleyrolle set out to build an algorithm that could determine the rate stem cells and cancer stem cells divide.

High hopes to treat or prevent diseases have been pinned on these indistinguishable cells, which are often adrift in populations of millions of other cells. Scientists know stem cells exist mainly because their handiwork is everywhere — tissues heal and regenerate because of stem cells, and somehow cancer may reappear years after it was thought to be completely eliminated.

With Geoffrey Ericksson, Ph.D., a computational neuroscientist at the Queensland Brain Institute, and other scientists in Australia, the team proposed a mathematical interpretation of neurospheres — tiny collections of brain cells that include stem cells and their progeny at different stages of development.

They tested the mathematical approach by using brain tumor and breast tumor cells in cultures and in mice, correlating the estimates generated by the mathematical model with the aggressiveness of the cells they were studying.

"The unique thing about our study is we were able to do the biology," Deleyrolle said. "We took our simulation to the real world with real cells."

By offering a method to evaluate the effects of diseases and treatments on stem cell activity in the brain, as well as allowing the assessment of malignant stemlike cells, researchers believe they can better evaluate potential therapies for diseases.

"Estimating the numbers of stem cells one has in a particular tissue or culture has important implications in the development of therapeutics, including those for brain tumors," said Harley Kornblum, M.D., Ph.D., professor in residence at the Broad Center of Regenerative Medicine and Stem Cell Research at the University of California, Los Angeles, who was not involved with the study. "This method provides a mathematical model that will enable researchers to do just that. Certainly, it will help my own research in these areas a great deal."

John Pastor | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>