Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fighting Selenium Deficiency

11.11.2010
Approximately 1 billion people worldwide suffer from a deficiency of selenium, an essential nutrient for liver, heart, thyroid, and immune function. Since selenium deficiency is prevalent in Southeast Asia, researchers are studying the best biofortification for lowland rice production.

In a study funded by the Commonwealth Government of Australia, the soil retention of three types of selenium was tested. The research appears in the September-October issue of the Soil Science Society of America Journal.

According to researchers at the University of Adelaide, biofortification of rice with selenium is most easily performed by adding selenium-enriched fertilizers to rice either as a spray or as a fertilizer amendment to the soil. Lowland rice soil is usually flooded, unlike upland rice soil which served as the control variable in the experiment.

Lakmalie Premarathna, University of Adelaide, and the author of the paper, measured the availability of selenium in rice crops when a pre-plant fertilizer was added.

“Elemental selenium is unsuitable as a pre-plant fertilizer for lowland rice as it is not readily oxidized in the soil to soluble forms that crops can absorb,” she says. Selenite and selenate were also ruled out because they became poorly available forms of selenium when subjected to flooding.

Adding selenium in foliar sprays is more labor intensive than adding selenium-enriched fertilizers to the soils at planting, but the fate of various forms of fertilizer selenium in flooded (lowland) rice soils is not well understood, according to Premarathna.

However, lowland rice paddies are drained a few weeks before harvesting. She suspects that levels of selenium could potentially return to suitable levels for crop absorption. Research is ongoing at the University of Adelaide to find the best biofortification for lowland rice production systems.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at www.soils.org/publications/sssaj/abstracts.

Soil Science Society of America Journal, www.soils.org/publications/sssaj, is a peer-reviewed international journal published six times a year by the Soil Science Society of America. Its contents focus on research relating to physics; chemistry; biology and biochemistry; fertility and plant nutrition; genesis, morphology, and classification; water management and conservation; forest, range, and wildland soils; nutrient management and soil and plant analysis; mineralogy; and wetland soils.

The Soil Science Society of America (SSSA) is a progressive, international scientific society that fosters the transfer of knowledge and practices to sustain global soils. Based in Madison, WI, and founded in 1936, SSSA is the professional home for 6,000+ members dedicated to advancing the field of soil science. It provides information about soils in relation to crop production, environmental quality, ecosystem sustainability, bioremediation, waste management, recycling, and wise land use.

SSSA supports its members by providing quality research-based publications, educational programs, certifications, and science policy initiatives via a Washington, DC, office. For more information, visit www.soils.org.

Sara Uttech | Newswise Science News
Further information:
http://www.sciencesocieties.org
http://www.soils.org

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>