Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fibrin-Derived Peptide FX06 Reduces Cardiac Reperfusion Injury

03.09.2008
ESC Congress 2008 - Hot Line III

Data presented today at the European Society of Cardiology Congress demonstrates the effectiveness of a peptide called FX06 in preventing cardiac damage resulting from treatment following a heart attack. While reperfusion is well established as a standard of care, it paradoxically causes additional damage to heart muscle in patients surviving from these attacks - a phenomenon termed “reperfusion injury”. FX06 is a novel compound intended to prevent that damage.

Professor Dan Atar, the Coordinating Investigator of the F.I.R.E. (FX06 In ischemia and REperfusion) trial, a Phase II clinical study of FX06, will present the results of the trial at: 12-noon on September 2nd in the Hot Line III Session at the European Society of Cardiology Congress in Munich, Germany.

“Re-establishment of blood flow, either by catheter-based balloon-intervention (PCI) or by thrombolysis, is necessary and life-saving in the treatment of acute myocardial infarctions. However, such interventions can lead to further damage to the heart muscle due to blood vessel dysfunction and inflammation,” said Dan Atar, Professor of Cardiology at the Aker University Hospital, University of Oslo, Norway. “Based on the F.I.R.E. results, FX06 has been shown to reduce damage to the heart muscle by inhibiting inflammation and protecting vascular function. We predict that FX06 may become a novel treatment for STEMI patients undergoing PCI, representing a major advance in acute cardiac care.”

The Phase II clinical trial of FX06 (F.I.R.E. study) was completed in March 2008, with data indicating a statistically significant reduction in myocardial necrosis following intravenous application of FX06 concurrent with reperfusion. FX06 is a peptide that binds to VE-cadherin, a target on the surfaces of endothelial cells, which form the inner cell layer of blood vessels, thereby preserving blood vessel function. This leads to reduced inflammation, reduced oedema and reduced infarct sizes.

About the study:

The F.I.R.E. (FX06 In Ischemia and REperfusion) trial was conducted between October 2006 and March 2008 as a randomized, double-blind, placebo-controlled study involving 234 patients from 26 leading centres of interventional cardiology in Europe. The study evaluated infarct size in patients undergoing percutaneous coronary intervention (PCI) for acute ST-segment elevation myocardial infarction (STEMI). FX06 was administered intravenously to patients during reperfusion treatment, and the effect on heart muscle preservation was then assessed using the most advanced imaging technology: cardiac magnetic resonance imaging (CMR). The primary endpoint was reduction in infarct size at five days after myocardial infarction.

Results showed that at 5 days post-PCI, the necrotic zone of the infarct was significantly reduced by 58% and the total affected zone of the left ventricle was reduced by 21%. This was accompanied by a reduction in markers of heart muscle cell necrosis. After 4 months, the resulting scar mass was reduced by 37%, suggesting that a reduction of reperfusion injury indeed may lead to decrease in scar tissue formation. Major adverse cardiac events in the FX06 group were also lower compared to the placebo group, which may indicate an effect of the drug on adverse patient outcome after an infarction.

Jacqueline Partarrieu | alfa
Further information:
http://www.escardio.org

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>