Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fewer viral relics may be due to a less bloody evolutionary history

02.02.2015

Humans have fewer remnants of viral DNA in their genes compared to other mammals, a new study has found. This decrease could be because of reduced exposure to blood-borne viruses as humans evolved to use tools rather than biting during violent conflict and the hunting of animals.

Despite natural defence systems, a retrovirus occasionally infects a mammal's egg or sperm, and the virus's genetic code gets incorporated into the animal's own genome. This viral 'fossil' then passes down from generation to generation: we all carry remnants of DNA from viruses that infected our ancestors millions of years ago. These 'endogenous retroviruses' (ERVs) appear not to cause us any harm, even though they are known to result in diseases such as cancer in other animals.

A team of researchers from the University of Oxford and Plymouth University, UK, and the Aaron Diamond AIDS Research Center, USA, wondered if there was a combination of factors unique to humans that explained why these viral fossils in our genomes remain benign. They counted the number of times that retroviruses appear to have been integrated into an animal's genome in humans, comparing humans with 39 other mammalian species, including chimpanzees, dolphins and giant pandas.

Reporting their results in the journal Retrovirology, the researchers compared the genetic signature of the two edges of the virus. These edges are identical when the virus first invades the genome, but as they acquire random mutations over time, they slowly begin to diverge. By tracking this divergence, the research team could measure how long the retrovirus had spent in an animal's genome.

Using this measure, they found that, compared to other animals, far fewer retroviruses were incorporated into the genome for humans and other apes over the last 10 million years. Even compared to animals very similar to us, humans are unusual in not having acquired any new types of retroviruses into their DNA over the last 30 million years.

One reason for the reduction in retroviral incorporation into the human genome might be a change in behaviour as humans evolved: fewer bloody fights and less exposure to infected meat meant that compared to other animals, our ancestors became less likely to encounter blood, a major route for viral infection.

'Considering us simply as a primate species, the proportion of human individuals that are infected with retroviruses is much less than among our relatives such as chimpanzees,' said Dr Robert Belshaw from Plymouth University.

However, lead researcher Dr Gkikas Magiorkinis from Oxford University's Department of Zoology said: 'We have shown in the past that Hepatitis C, a virus transmitted mainly through blood, was spread massively after World War II. There is no doubt that the past trend of reduced blood contacts has been reversed in the last century, and this has severe consequences for viral infections.'

###

The work was supported by The Wellcome Trust and the Medical Research Council.

Media Contact

University of Oxford News Office
news.office@admin.ox.ac.uk
44-186-528-0528

 @UniofOxford

http://www.ox.ac.uk/ 

University of Oxford News Office | EurekAlert!

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>