Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fertilizer nutrient imbalance to limit food production in Africa

28.01.2014
A growing imbalance between phosphorus and nitrogen fertilizer use in Africa could lead to crop yield reductions of nearly 30% by 2050, according to a new study from researchers at the International Institute for Applied Systems Analysis (IIASA).

Underuse of phosphorus-based fertilizers in Africa currently contributes to a growing yield gap—the difference between how much crops could produce in ideal circumstances compared to actual yields.

This phosphorus-specific yield gap currently lies at around 10% for subsistence farmers, but will grow to 27% by 2050 if current trends continue, according to a study published today in the journal Global Change Biology.

“This research shows that the imbalance between nitrogen and phosphorus applications has the potential to further limit food production for a growing population in Africa” says Marijn van der Velde, a researcher now at the Joint Research Centre of the European Commission, who led the study while working at IIASA.

While nitrogen-based fertilizers can be produced by a process that extracts the element from the air, phosphorus must be mined from rock—and reserves are limited. That makes phosphorus fertilizers expensive, especially in the longer term.

“Farmers with limited money are more likely to buy and have access to cheaper nitrogen-based fertilizers,” says van der Velde. “While this might work in the short term, in the longer term it has a negative effect on crop growth as soil nutrients become more imbalanced.”

As farmers use fertilizers for their crops, nutrients such as nitrogen and phosphorus build up in the soil, providing a reserve of nutrients that plants need to grow. But fertilizer use remains very low in Africa, and to increase crop production, it is widely recognized that farmers must increase their fertilizer use. And while nitrogen-based fertilizer usage has begun to increase in Africa in the last 10 years, the application of phosphorus to cropland has not kept pace, leading to a growing imbalance between nitrogen and phosphorus levels in soil. The new study shows that increases in nitrogen and phosphorus inputs must happen in a way that provides crops with the balanced nutrient input they need.

The study used data from Food and Agriculture Organization (FAO) crop trials as well as an established EPIC large-scale crop model to estimate how the imbalance affects current and future crop yields.

“Previous research has looked at these effects on a field and local scale, but this is the first study to do so at the continental scale,” says IIASA researcher Christian Folberth, who also worked on the study.

In order to make optimal use of current nitrogen inputs, the researchers estimated that phosphorus applications would need to increase 2.3-fold. To close yield gaps nitrogen applications would have to increase 5-fold. Phosphorus applications would have to increase nearly 12-fold from 2.2 to 25.9 kg per hectare.

But because of the cost of phosphorus, that remains a challenge. ”While much of the remaining phosphorus reserves are found in Morocco, on the African continent, we need to find better ways for African farmers to access this precious resource” says van der Velde.

The global phosphorus cycle is, besides nitrogen, also increasingly growing out of balance with carbon, the subject of another recent paper by the same group of researchers and a new European Research Council grant for continued research by IIASA and an international team of scientists.

“The change in the stoichiometry of nitrogen and carbon from rising atmospheric CO2 concentrations relative to phosphorus has no equivalent in the Earth’s history and the impacts will go beyond the agricultural sector.” says van der Velde.

Reference
Van der Velde M, Folberth C, et. al. (2013). African crop yield reductions due to increasingly unbalanced Nitrogen and Phosphorus consumption. Global Change Biology doi: 10.1111/gcb.12481

Contacts

Marijn van der Velde
European Commission - DG Joint Research Centre
Institute for Environment and Sustainability – MARS Unit
Tel: +39-0332-783577
Marijn.van-der-Velde@jrc.ec.europa.eu
Christian Folberth
Research Scholar
Ecosystems Services and Management
Tel: +43(0) 2236 807 451
folberth@iiasa.ac.at
About IIASA:
IIASA is an international scientific institute that conducts research into the critical issues of global environmental, economic, technological, and social change that we face in the twenty-first century. Our findings provide valuable options to policy makers to shape the future of our changing world.

Katherine Leitzell | idw
Further information:
http://www.iiasa.ac.at

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>