Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Feast or famine: Researchers identify leptin receptor's sidekick as a target for appetite regulation

12.01.2011
A Mayo Clinic researcher says the surprising findings suggest the possibility of a novel treatment for obesity

A study by researchers at Mayo Clinic's campus in Florida and Washington University School of Medicine adds a new twist to the body of evidence suggesting human obesity is due in part to genetic factors. While studying hormone receptors in laboratory mice, neuroscientists identified a new molecular player responsible for the regulation of appetite and metabolism.

In the Jan. 11 online issue of PLoS Biology, the authors report that mice engineered not to express the lipoprotein receptor LRP1, in the brain's hypothalamus, began to eat uncontrollably, growing obese as well as lethargic. They found that LRP1, a major transporter of lipids and proteins into brain cells, is a "co-receptor" with the leptin receptor — meaning that both the leptin and LRP1 receptors need to work together to transmit leptin signals.

Leptin decides whether fat should be stored or used, resulting in lethargy or energy. When working properly, the hormone, which is made when body cells take in fat from food, travels to the brain to tamp down appetite.

"If a person is born with too little gene expression in the leptin pathway, which includes its receptors, or the circuitry is not functioning well, then leptin will not work as well as it should," says the study's lead investigator, neuroscientist Guojun Bu, Ph.D., of Mayo Clinic. "Appetite will increase, and body fat will be stored."

Given these results, Dr. Bu says it may be possible to develop a treatment that increases gene expression in one or both of the protein receptors, which then increases the messages meant to decrease appetite sent to the brain.

The serendipitous findings were born out of Dr. Bu's primary research focus, Alzheimer's disease. He has been studying how cholesterol, essential to the smooth functioning of neurons, is carried from star-shaped astrocytes to the surface of neurons by apolipoprotein E (APOE). There are two major receptors for APOE on brain neurons, and LRP1 is one of them.

Inheriting one version of APOE — APOE4 — is a known risk factor for development of Alzheimer's disease, and Dr. Bu has found that APOE4 is less effective at transporting cholesterol. To understand what role LRP1 plays in bringing APOE4 into neurons, he created a knockout mouse model with no expression of LRP1 in its forebrain neurons; the rest of its body expressed the receptor normally.

He found neurons lacking LRP1 had even less ability to absorb cholesterol, and that they lost synaptic contact with other neurons, impairing their ability to retain memory.

But Dr. Bu was surprised to find the mice suddenly gained weight. "This is the opposite of what had been observed in mice who did not have the receptor in their body fat cells," he says. "Those animals became skinny because they couldn't absorb enough lipoproteins."

The knockout mice were indistinguishable from control mice for the first six months of life but then gained weight rapidly, a phenomenon that correlated with a decrease in LPR1 expression in the central nervous system. At 12 months old, the genetically engineered mice had twice as much body fat as control mice, lacked energy, and were insulin resistant. "Together, these results indicate that LRP1, which is critical in lipid metabolism, also regulates food intake and energy balance in the adult central nervous system," Dr. Bu says.

The study was funded by the National Institutes of Health and the Alzheimer's Association.

The researchers declare no conflicts of interest.

About Mayo Clinic Mayo Clinic is a nonprofit worldwide leader in medical care, research and education for people from all walks of life. For more information, visit www.mayoclinic.org/about/ and www.mayoclinic.org/news2010-jax/5837.html.

Kevin Punsky | EurekAlert!
Further information:
http://www.mayo.edu

Further reports about: APOE4 Alzheimer LRP Mayo apoE body fat brain cell central nervous system nervous system protein receptor

More articles from Studies and Analyses:

nachricht Physics of bubbles could explain language patterns
25.07.2017 | University of Portsmouth

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>