Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Feast or famine: Researchers identify leptin receptor's sidekick as a target for appetite regulation

A Mayo Clinic researcher says the surprising findings suggest the possibility of a novel treatment for obesity

A study by researchers at Mayo Clinic's campus in Florida and Washington University School of Medicine adds a new twist to the body of evidence suggesting human obesity is due in part to genetic factors. While studying hormone receptors in laboratory mice, neuroscientists identified a new molecular player responsible for the regulation of appetite and metabolism.

In the Jan. 11 online issue of PLoS Biology, the authors report that mice engineered not to express the lipoprotein receptor LRP1, in the brain's hypothalamus, began to eat uncontrollably, growing obese as well as lethargic. They found that LRP1, a major transporter of lipids and proteins into brain cells, is a "co-receptor" with the leptin receptor — meaning that both the leptin and LRP1 receptors need to work together to transmit leptin signals.

Leptin decides whether fat should be stored or used, resulting in lethargy or energy. When working properly, the hormone, which is made when body cells take in fat from food, travels to the brain to tamp down appetite.

"If a person is born with too little gene expression in the leptin pathway, which includes its receptors, or the circuitry is not functioning well, then leptin will not work as well as it should," says the study's lead investigator, neuroscientist Guojun Bu, Ph.D., of Mayo Clinic. "Appetite will increase, and body fat will be stored."

Given these results, Dr. Bu says it may be possible to develop a treatment that increases gene expression in one or both of the protein receptors, which then increases the messages meant to decrease appetite sent to the brain.

The serendipitous findings were born out of Dr. Bu's primary research focus, Alzheimer's disease. He has been studying how cholesterol, essential to the smooth functioning of neurons, is carried from star-shaped astrocytes to the surface of neurons by apolipoprotein E (APOE). There are two major receptors for APOE on brain neurons, and LRP1 is one of them.

Inheriting one version of APOE — APOE4 — is a known risk factor for development of Alzheimer's disease, and Dr. Bu has found that APOE4 is less effective at transporting cholesterol. To understand what role LRP1 plays in bringing APOE4 into neurons, he created a knockout mouse model with no expression of LRP1 in its forebrain neurons; the rest of its body expressed the receptor normally.

He found neurons lacking LRP1 had even less ability to absorb cholesterol, and that they lost synaptic contact with other neurons, impairing their ability to retain memory.

But Dr. Bu was surprised to find the mice suddenly gained weight. "This is the opposite of what had been observed in mice who did not have the receptor in their body fat cells," he says. "Those animals became skinny because they couldn't absorb enough lipoproteins."

The knockout mice were indistinguishable from control mice for the first six months of life but then gained weight rapidly, a phenomenon that correlated with a decrease in LPR1 expression in the central nervous system. At 12 months old, the genetically engineered mice had twice as much body fat as control mice, lacked energy, and were insulin resistant. "Together, these results indicate that LRP1, which is critical in lipid metabolism, also regulates food intake and energy balance in the adult central nervous system," Dr. Bu says.

The study was funded by the National Institutes of Health and the Alzheimer's Association.

The researchers declare no conflicts of interest.

About Mayo Clinic Mayo Clinic is a nonprofit worldwide leader in medical care, research and education for people from all walks of life. For more information, visit and

Kevin Punsky | EurekAlert!
Further information:

Further reports about: APOE4 Alzheimer LRP Mayo apoE body fat brain cell central nervous system nervous system protein receptor

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>