Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Feast or famine: Researchers identify leptin receptor's sidekick as a target for appetite regulation

12.01.2011
A Mayo Clinic researcher says the surprising findings suggest the possibility of a novel treatment for obesity

A study by researchers at Mayo Clinic's campus in Florida and Washington University School of Medicine adds a new twist to the body of evidence suggesting human obesity is due in part to genetic factors. While studying hormone receptors in laboratory mice, neuroscientists identified a new molecular player responsible for the regulation of appetite and metabolism.

In the Jan. 11 online issue of PLoS Biology, the authors report that mice engineered not to express the lipoprotein receptor LRP1, in the brain's hypothalamus, began to eat uncontrollably, growing obese as well as lethargic. They found that LRP1, a major transporter of lipids and proteins into brain cells, is a "co-receptor" with the leptin receptor — meaning that both the leptin and LRP1 receptors need to work together to transmit leptin signals.

Leptin decides whether fat should be stored or used, resulting in lethargy or energy. When working properly, the hormone, which is made when body cells take in fat from food, travels to the brain to tamp down appetite.

"If a person is born with too little gene expression in the leptin pathway, which includes its receptors, or the circuitry is not functioning well, then leptin will not work as well as it should," says the study's lead investigator, neuroscientist Guojun Bu, Ph.D., of Mayo Clinic. "Appetite will increase, and body fat will be stored."

Given these results, Dr. Bu says it may be possible to develop a treatment that increases gene expression in one or both of the protein receptors, which then increases the messages meant to decrease appetite sent to the brain.

The serendipitous findings were born out of Dr. Bu's primary research focus, Alzheimer's disease. He has been studying how cholesterol, essential to the smooth functioning of neurons, is carried from star-shaped astrocytes to the surface of neurons by apolipoprotein E (APOE). There are two major receptors for APOE on brain neurons, and LRP1 is one of them.

Inheriting one version of APOE — APOE4 — is a known risk factor for development of Alzheimer's disease, and Dr. Bu has found that APOE4 is less effective at transporting cholesterol. To understand what role LRP1 plays in bringing APOE4 into neurons, he created a knockout mouse model with no expression of LRP1 in its forebrain neurons; the rest of its body expressed the receptor normally.

He found neurons lacking LRP1 had even less ability to absorb cholesterol, and that they lost synaptic contact with other neurons, impairing their ability to retain memory.

But Dr. Bu was surprised to find the mice suddenly gained weight. "This is the opposite of what had been observed in mice who did not have the receptor in their body fat cells," he says. "Those animals became skinny because they couldn't absorb enough lipoproteins."

The knockout mice were indistinguishable from control mice for the first six months of life but then gained weight rapidly, a phenomenon that correlated with a decrease in LPR1 expression in the central nervous system. At 12 months old, the genetically engineered mice had twice as much body fat as control mice, lacked energy, and were insulin resistant. "Together, these results indicate that LRP1, which is critical in lipid metabolism, also regulates food intake and energy balance in the adult central nervous system," Dr. Bu says.

The study was funded by the National Institutes of Health and the Alzheimer's Association.

The researchers declare no conflicts of interest.

About Mayo Clinic Mayo Clinic is a nonprofit worldwide leader in medical care, research and education for people from all walks of life. For more information, visit www.mayoclinic.org/about/ and www.mayoclinic.org/news2010-jax/5837.html.

Kevin Punsky | EurekAlert!
Further information:
http://www.mayo.edu

Further reports about: APOE4 Alzheimer LRP Mayo apoE body fat brain cell central nervous system nervous system protein receptor

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>