Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How fear skews our spatial perception

22.10.2012
That snake heading towards you may be further away than it appears. Fear can skew our perception of approaching objects, causing us to underestimate the distance of a threatening one, finds a study published in Current Biology.

“Our results show that emotion and perception are not fully dissociable in the mind,” says Emory psychologist Stella Lourenco, co-author of the study. “Fear can alter even basic aspects of how we perceive the world around us. This has clear implications for understanding clinical phobias.”

Lourenco conducted the research with Matthew Longo, a psychologist at Birkbeck, University of London.

People generally have a well-developed sense for when objects heading towards them will make contact, including a split-second cushion for dodging or blocking the object, if necessary. The researchers set up an experiment to test the effect of fear on the accuracy of that skill.

Study participants made time-to-collision judgments of images on a computer screen. The images expanded in size over one second before disappearing, to simulate “looming,” an optical pattern used instinctively to judge collision time. The study participants were instructed to gauge when each of the visual stimuli on the computer screen would have collided with them by pressing a button.

The participants tended to underestimate the collision time for images of threatening objects, such as a snake or spider, as compared to non-threatening images, such as a rabbit or butterfly.

The results challenge the traditional view of looming, as a purely optical cue to object approach. “We’re showing that what the object is affects how we perceive looming. If we’re afraid of something, we perceive it as making contact sooner,” Longo says.

“Even more striking,” Lourenco adds, “it is possible to predict how much a participant will underestimate the collision time of an object by assessing the amount of fear they have for that object. The more fearful someone reported feeling of spiders, for example, the more they underestimated time-to-collision for a looming spider. That makes adaptive sense: If an object is dangerous, it’s better to swerve a half-second too soon than a half-second too late.”

The researchers note that it’s unclear whether fear of an object makes the object appear to travel faster, or whether that fear makes the viewer expand their sense of personal space, which is generally about an arm’s length away.

“We’d like to distinguish between these two possibilities in future research. Doing so will allow us to shed insight on the mechanics of basic aspects of spatial perception and the mechanisms underlying particular phobias,” Lourenco says.

Beverly Clark | EurekAlert!
Further information:
http://www.emory.edu
http://esciencecommons.blogspot.de/2012/10/how-fear-skews-our-spatial-perception.html

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>