Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

FAU and Georgia Aquarium to Conduct First Study of Key Immune Cells of Bottlenose Dolphins and Response to Environmental Stresso

02.08.2012
Florida Atlantic University’s Charles E. Schmidt College of Medicine and Georgia Aquarium have combined their expertise to work jointly on studying emerging diseases in bottlenose dolphins as a possible consequence of environmental stressors on their immune system.

This collaboration, funded by Georgia Aquarium, is directed by Dr. Mahyar Nouri-Shirazi, D.V.M., Ph.D., associate professor of integrated medical science in FAU’s Charles E. Schmidt College of Medicine and Dr. Gregory Bossart, V.M.D., Ph.D., chief veterinary officer, veterinary pathologist and senior vice president of animal health, research and conservation, Georgia Aquarium.

Nouri-Shirazi has spent numerous years studying the biological characteristics of dendritic cells (key immune cells that form part of the mammalian immune system), the initiators/controllers of the immune system as they relate to human health. Bossart has extensive clinical and pathologic experience with dolphins and has focused on the possible impact of environmental stressors on their immunity. This collaborative project combines these researchers’ mutual interests and expertise, enabling them to characterize dendritic cells in bottlenose dolphins and analyze their functional properties and response to environmental contaminants for the first time.

“Our marine mammals are suffering from many of the same diseases that afflict human beings including skin diseases, MRSA and other antibiotic resistant bacteria, tumors, cancer, respiratory diseases and urogenital disorders,” said Nouri-Shirazi. “By working together with the leader in aquatic conservation and research we will have a better understanding of how these diseases are related to environmental stressors and how they affect both animals and humans.”

For more than 20 years, dedicated marine mammal research has demonstrated an increase in reporting of marine mammal disease that has resulted from exposure to environmental stressors such as chemical pollutants, harmful algal biotoxins and emerging or resurging pathogens. Since many marine mammal species share the coastal environment with humans and consume the same food, they also may serve as effective barometers for current or potential negative impacts on animal health and public health problems. Examining these marine sentinels enables better characterization and management of impacts that ultimately affect animal and human health associated with the oceans.

Bossart will provide Nouri-Shirazi with blood samples collected from managed and free-ranging bottlenose dolphins from Georgia Aquarium and the internationally recognized Health and Risk Assessment (HERA) program based at FAU’s Harbor Branch Oceanographic Institute (HBOI). Since 2003, under a federal permit, researchers from the HERA program have examined and released more than 240 bottlenose dolphins primarily from the Florida Indian River Lagoon (IRL)—a unique estuary that covers approximately 30 percent of Florida’s east coast. HBOI provides the majority of the financial support for HERA on an annual basis with the Protect Wild Dolphin Florida Specialty License Plate funds. Research staff at HBOI coordinate the logistics of the program working with Steve McCulloch, program manager for HERA.

“Our interdisciplinary collaboration with FAU’s College of Medicine begins to address the critical relationship of ocean and human health, which is inextricably linked on a global scale,” said Bossart. “The connections between the health of humans, animals, and the environments in which they live are well recognized and have recently been referred to as ‘one health, one medicine.’”

Using marine mammals as sentinels may provide important clues about the cumulative and synergistic effects of contaminant stressors on the immune system of not only marine mammals, but also humans who inhabit the same coastal ecosystems.

“We are very pleased to be a part of this unique research collaboration,” said Dr. David J. Bjorkman, M.D., M.S.P.H., dean of FAU’s Charles E. Schmidt College of Medicine. “Combining the expertise and resources of both of our institutions brings together professionals from different disciplines with the aim of better understanding the important links among human, animal and ecosystem health.”

About Florida Atlantic University:

Florida Atlantic University, established in 1961, officially opened its doors in 1964 as the fifth public university in Florida. Today, the University serves more than 29,000 undergraduate and graduate students at sites throughout its six-county service region in southeast Florida, where its annual economic impact exceeds $6.3 billion. FAU’s world-class teaching and research faculty serves students through 10 colleges: the Dorothy F. Schmidt College of Arts and Letters, the College of Business, the College for Design and Social Inquiry, the College of Education, the College of Engineering and Computer Science, the Graduate College, the Harriet L. Wilkes Honors College, the Charles E. Schmidt College of Medicine, the Christine E. Lynn College of Nursing and the Charles E. Schmidt College of Science. FAU is ranked as a High Research Activity institution by the Carnegie Foundation for the Advancement of Teaching. The University is placing special focus on the rapid development of three signature themes — marine and coastal issues, biotechnology and contemporary societal challenges — which provide opportunities for faculty and students to build upon FAU’s existing strengths in research and scholarship. For more information, visit www.fau.edu.

About Georgia Aquarium:

The Georgia Aquarium in Atlanta, Georgia is the world’s largest with more than ten million gallons of water and more aquatic life than any other aquarium. The mission of the Georgia Aquarium is to be an entertaining, educational and scientific institution featuring exhibits and programs of the highest standards, offering engaging and exciting guest experiences and promoting the conservation of aquatic biodiversity throughout the world. One of the Georgia Aquarium’s goals is to be a leading facility for aquatic animal conservation and research. The Georgia Aquarium conducts research to improve husbandry methods, develop innovative and exciting new exhibits, contribute to the understanding of the underwater world and apply new discoveries to the conservation of aquatic life. Every day, researchers in the Aquarium’s exhibits and labs are learning more about marine life in order to develop new methods of animal care and veterinary medicine. By combining field research with the study of on-site animals in a controlled environment, the Aquarium is contributing to the advancement of human knowledge in the area of animal science. For additional information, visit www.georgiaaquarium.org.

Gisele Galoustian | Newswise Science News
Further information:
http://www.fau.edu
http://www.georgiaaquarium.org

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>