Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

FAU and Georgia Aquarium to Conduct First Study of Key Immune Cells of Bottlenose Dolphins and Response to Environmental Stresso

02.08.2012
Florida Atlantic University’s Charles E. Schmidt College of Medicine and Georgia Aquarium have combined their expertise to work jointly on studying emerging diseases in bottlenose dolphins as a possible consequence of environmental stressors on their immune system.

This collaboration, funded by Georgia Aquarium, is directed by Dr. Mahyar Nouri-Shirazi, D.V.M., Ph.D., associate professor of integrated medical science in FAU’s Charles E. Schmidt College of Medicine and Dr. Gregory Bossart, V.M.D., Ph.D., chief veterinary officer, veterinary pathologist and senior vice president of animal health, research and conservation, Georgia Aquarium.

Nouri-Shirazi has spent numerous years studying the biological characteristics of dendritic cells (key immune cells that form part of the mammalian immune system), the initiators/controllers of the immune system as they relate to human health. Bossart has extensive clinical and pathologic experience with dolphins and has focused on the possible impact of environmental stressors on their immunity. This collaborative project combines these researchers’ mutual interests and expertise, enabling them to characterize dendritic cells in bottlenose dolphins and analyze their functional properties and response to environmental contaminants for the first time.

“Our marine mammals are suffering from many of the same diseases that afflict human beings including skin diseases, MRSA and other antibiotic resistant bacteria, tumors, cancer, respiratory diseases and urogenital disorders,” said Nouri-Shirazi. “By working together with the leader in aquatic conservation and research we will have a better understanding of how these diseases are related to environmental stressors and how they affect both animals and humans.”

For more than 20 years, dedicated marine mammal research has demonstrated an increase in reporting of marine mammal disease that has resulted from exposure to environmental stressors such as chemical pollutants, harmful algal biotoxins and emerging or resurging pathogens. Since many marine mammal species share the coastal environment with humans and consume the same food, they also may serve as effective barometers for current or potential negative impacts on animal health and public health problems. Examining these marine sentinels enables better characterization and management of impacts that ultimately affect animal and human health associated with the oceans.

Bossart will provide Nouri-Shirazi with blood samples collected from managed and free-ranging bottlenose dolphins from Georgia Aquarium and the internationally recognized Health and Risk Assessment (HERA) program based at FAU’s Harbor Branch Oceanographic Institute (HBOI). Since 2003, under a federal permit, researchers from the HERA program have examined and released more than 240 bottlenose dolphins primarily from the Florida Indian River Lagoon (IRL)—a unique estuary that covers approximately 30 percent of Florida’s east coast. HBOI provides the majority of the financial support for HERA on an annual basis with the Protect Wild Dolphin Florida Specialty License Plate funds. Research staff at HBOI coordinate the logistics of the program working with Steve McCulloch, program manager for HERA.

“Our interdisciplinary collaboration with FAU’s College of Medicine begins to address the critical relationship of ocean and human health, which is inextricably linked on a global scale,” said Bossart. “The connections between the health of humans, animals, and the environments in which they live are well recognized and have recently been referred to as ‘one health, one medicine.’”

Using marine mammals as sentinels may provide important clues about the cumulative and synergistic effects of contaminant stressors on the immune system of not only marine mammals, but also humans who inhabit the same coastal ecosystems.

“We are very pleased to be a part of this unique research collaboration,” said Dr. David J. Bjorkman, M.D., M.S.P.H., dean of FAU’s Charles E. Schmidt College of Medicine. “Combining the expertise and resources of both of our institutions brings together professionals from different disciplines with the aim of better understanding the important links among human, animal and ecosystem health.”

About Florida Atlantic University:

Florida Atlantic University, established in 1961, officially opened its doors in 1964 as the fifth public university in Florida. Today, the University serves more than 29,000 undergraduate and graduate students at sites throughout its six-county service region in southeast Florida, where its annual economic impact exceeds $6.3 billion. FAU’s world-class teaching and research faculty serves students through 10 colleges: the Dorothy F. Schmidt College of Arts and Letters, the College of Business, the College for Design and Social Inquiry, the College of Education, the College of Engineering and Computer Science, the Graduate College, the Harriet L. Wilkes Honors College, the Charles E. Schmidt College of Medicine, the Christine E. Lynn College of Nursing and the Charles E. Schmidt College of Science. FAU is ranked as a High Research Activity institution by the Carnegie Foundation for the Advancement of Teaching. The University is placing special focus on the rapid development of three signature themes — marine and coastal issues, biotechnology and contemporary societal challenges — which provide opportunities for faculty and students to build upon FAU’s existing strengths in research and scholarship. For more information, visit www.fau.edu.

About Georgia Aquarium:

The Georgia Aquarium in Atlanta, Georgia is the world’s largest with more than ten million gallons of water and more aquatic life than any other aquarium. The mission of the Georgia Aquarium is to be an entertaining, educational and scientific institution featuring exhibits and programs of the highest standards, offering engaging and exciting guest experiences and promoting the conservation of aquatic biodiversity throughout the world. One of the Georgia Aquarium’s goals is to be a leading facility for aquatic animal conservation and research. The Georgia Aquarium conducts research to improve husbandry methods, develop innovative and exciting new exhibits, contribute to the understanding of the underwater world and apply new discoveries to the conservation of aquatic life. Every day, researchers in the Aquarium’s exhibits and labs are learning more about marine life in order to develop new methods of animal care and veterinary medicine. By combining field research with the study of on-site animals in a controlled environment, the Aquarium is contributing to the advancement of human knowledge in the area of animal science. For additional information, visit www.georgiaaquarium.org.

Gisele Galoustian | Newswise Science News
Further information:
http://www.fau.edu
http://www.georgiaaquarium.org

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>