Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Faster, simpler diagnosis for fibromyalgia may be on the horizon

24.07.2013
Pilot study intended to lead to test for use by primary care physicians

Researchers have developed a reliable way to use a finger-stick blood sample to detect fibromyalgia syndrome, a complicated pain disorder that often is difficult to diagnose.

If it were someday made available to primary care physicians, the test could knock up to five years off of the wait for a diagnosis, researchers predict.

In a pilot study, the scientists used a high-powered and specialized microscope to detect the presence of small molecules in blood-spot samples from patients known to have fibromyalgia.

By "training" the equipment to recognize that molecular pattern, the researchers then showed that the microscope could tell the difference between fibromyalgia and two types of arthritis that share some of the same symptoms.

Though more analysis is needed to identify exactly which molecules are related to development of the disorder itself, the researchers say their pilot data are promising.

"We've got really good evidence of a test that could be an important aid in the diagnosis of fibromyalgia patients," said Tony Buffington, professor of veterinary clinical sciences at The Ohio State University and senior author of the study. "We would like this to lead to an objective test for primary care doctors to use, which could produce a diagnosis as much as five years before it usually occurs."

Patients with fibromyalgia are often desperate by the time they receive treatment because of the lengthy process required to make a diagnosis. The main symptoms, persistent pain and fatigue, mimic many other conditions, so physicians tend to rule out other potential causes before diagnosing fibromyalgia. Additional symptoms include disrupted sleep and memory or thought problems. An estimated 5 million American adults have the disorder, according to the National Institute of Arthritis and Musculoskeletal and Skin Diseases.

"The importance of producing a faster diagnosis cannot be overstated, because patients experience tremendous stress during the diagnostic process. Just getting the diagnosis actually makes patients feel better and lowers costs because of reductions in anxiety," said Kevin Hackshaw, associate professor of medicine, division of rheumatology and immunology, at Ohio State's Wexner Medical Center and lead author of the study.

The study is published in the Aug. 21, 2013, issue of the journal Analyst.

The technology used in this work is infrared microspectroscopy, which identifies the biochemical content of a blood sample based on where peaks of molecules appear in the infrared spectrum. The technology offers hints at the molecules present in the samples based on how molecular bonds vibrate when they are struck by light.

The spectroscopy works on dried blood, so just a few drops from a finger stick produce enough blood to run this test.

Researchers first obtained blood samples from patients diagnosed with fibromyalgia (14), rheumatoid arthritis (15) and osteoarthritis (12). These other conditions were chosen for comparison because they produce similar symptoms as fibromyalgia, but are easier to diagnose.

The scientists analyzed each sample with the infrared microspectroscopy to identify the molecular patterns associated with each disease. This functioned as a "training" phase of the study.

When the researchers then entered blinded blood samples into the same machinery, each condition was accurately identified based on its molecular patterns.

"It separated them completely, with no misclassifications," Buffington said. "That's very important. It never mistook a patient with fibromyalgia for a patient with arthritis. Clearly we need more numbers, but this showed the technique is quite effective."

The researchers also analyzed some of the potential chemicals that could someday function as biomarkers in the fibromyalgia blood samples, but further studies are needed to identify the molecules responsible for the spectral patterns, he said.

Though an infrared microscope can be expensive, Buffington said the testing could be affordable if a central lab existed to run the samples. That the method can use dried blood samples makes this concept feasible because dried blood can be legally sent via U.S. mail, he noted.

Why is a veterinarian pursuing this type of research? Buffington is a renowned expert on domestic cats, including a painful bladder disorder they suffer called interstitial cystitis (IC). This syndrome also occurs in humans.

It turns out that the origins of IC, like such human disorders as irritable bowel syndrome and fibromyalgia, cannot be traced to the specific area of the anatomy most affected by the syndrome. These disorders are categorized as medically unexplained or functional syndromes, and Buffington has explored the possibility that a common link exists among these types of diseases, and that they might have origins in the central nervous system.

Buffington has filed two invention disclosures with the university, and Ohio State has filed multiple patent applications for the testing method, in the United States and internationally. In November, Ohio State was issued U.S. Patent 8,309,931 on a rapid diagnostic method for functional syndromes in humans and cats.

Additional co-authors include Luis Rodriguez-Saona and Marçal Plans of the Department of Food Science and Technology at Ohio State, and Lauren Bell of Metabolon Inc., based in Durham, N.C.

Contact: Tony Buffington, (614) 292-7987; buffington.1@osu.edu

Written by Emily Caldwell, (614) 292-8310; caldwell.151@osu.edu

Tony Buffington | EurekAlert!
Further information:
http://www.osu.edu

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>