Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Faster employees may indirectly motivate colleagues to increase production

16.06.2010
You wouldn't think that there would be much similarity between a hockey line and an automobile assembly line. However, University of Alberta management-science researcher Ken Schultz says that both groups can learn something about line design and human behaviour, which may help them perform better.

Schultz, who recently published an article in Management Science, analyzed production-line data from a General Motors plant and identified that there seemed to be a shift in how fast the task was completed. What he and his fellow researchers hypothesized was that these workers, who were performing similar tasks, were positively influenced by the performance on a fellow worker who completed his task more efficiently.

Schultz found that an individual's performance level may have a direct effect on what becomes "a good day's work" in that some members may change their work behaviour to match the output of their co-worker.

Schultz ties the results of their study to the principle of equity theory, or the idea that motivation comes from fair treatment—a good day's work for a good day's pay. "The workers may think 'we're not really connected, so I have no real reason to care about how fast you are working. But I'm a human being and I do care, and I do notice,'" said Schultz, who concluded that is possible for "people [to] change based on what they see."

Part of that change, Schultz found in his analysis of the production-line data, was that, by changing up lines to introduce a higher-performing worker to an average or lower-than-average performing line, an impact can be made on efficiency or productivity.

However, Schultz notes, simple switching people on teams will not produce the desired effect. In a plant, as in hockey, knowing which players to change up will provide the most benefit.

"You'd look for the person who's a good performer but doesn't react to others around him; that's the person you want to move to the low-level team," he said, because "there's a good chance he's going to be a person who has proven to be a leader.

Schultz also noted that the design of the workspace is equally important in influencing productivity, yet is an aspect that is ignored when designing new plants or redesigning workspaces. The key is to arrange the area so that workers are facing each other when performing their tasks, rather than facing away from each other, or in same direction. Allowing the workers to observe and monitor the speed of their co-workers is the necessary catalyst for the behavioural change to occur, he says.

"You don't have to say anything, you don't have to do anything, you don't have to put a flashing light over their head, said Schultz. "Just make sure people can see each other and allow the workers to do what they would naturally do."

Thus, whether seeking to improve productivity or build a strong contender for Lord Stanley's Cup, Schultz says that, while the environments and processes are different, being mindful of the human element and its motivational properties can produce the desired effect.

"Good coaches have seen this, and we have research that shows it's being doing in the factory floor as well," said Schultz. "You want your team to have not just good or average—or even great players—that can play well no matter where they are.

"To get that extra bit, you want to find the good or great players who will perform better around other great players."

Jamie Hanlon | EurekAlert!
Further information:
http://www.ualberta.ca

More articles from Studies and Analyses:

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

nachricht Pan-European study on “Smart Engineering”
30.03.2017 | IPH - Institut für Integrierte Produktion Hannover gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

NASA laser communications to provide Orion faster connections

30.03.2017 | Physics and Astronomy

Reusable carbon nanotubes could be the water filter of the future, says RIT study

30.03.2017 | Studies and Analyses

Unique genome architectures after fertilisation in single-cell embryos

30.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>