Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Faster employees may indirectly motivate colleagues to increase production

You wouldn't think that there would be much similarity between a hockey line and an automobile assembly line. However, University of Alberta management-science researcher Ken Schultz says that both groups can learn something about line design and human behaviour, which may help them perform better.

Schultz, who recently published an article in Management Science, analyzed production-line data from a General Motors plant and identified that there seemed to be a shift in how fast the task was completed. What he and his fellow researchers hypothesized was that these workers, who were performing similar tasks, were positively influenced by the performance on a fellow worker who completed his task more efficiently.

Schultz found that an individual's performance level may have a direct effect on what becomes "a good day's work" in that some members may change their work behaviour to match the output of their co-worker.

Schultz ties the results of their study to the principle of equity theory, or the idea that motivation comes from fair treatment—a good day's work for a good day's pay. "The workers may think 'we're not really connected, so I have no real reason to care about how fast you are working. But I'm a human being and I do care, and I do notice,'" said Schultz, who concluded that is possible for "people [to] change based on what they see."

Part of that change, Schultz found in his analysis of the production-line data, was that, by changing up lines to introduce a higher-performing worker to an average or lower-than-average performing line, an impact can be made on efficiency or productivity.

However, Schultz notes, simple switching people on teams will not produce the desired effect. In a plant, as in hockey, knowing which players to change up will provide the most benefit.

"You'd look for the person who's a good performer but doesn't react to others around him; that's the person you want to move to the low-level team," he said, because "there's a good chance he's going to be a person who has proven to be a leader.

Schultz also noted that the design of the workspace is equally important in influencing productivity, yet is an aspect that is ignored when designing new plants or redesigning workspaces. The key is to arrange the area so that workers are facing each other when performing their tasks, rather than facing away from each other, or in same direction. Allowing the workers to observe and monitor the speed of their co-workers is the necessary catalyst for the behavioural change to occur, he says.

"You don't have to say anything, you don't have to do anything, you don't have to put a flashing light over their head, said Schultz. "Just make sure people can see each other and allow the workers to do what they would naturally do."

Thus, whether seeking to improve productivity or build a strong contender for Lord Stanley's Cup, Schultz says that, while the environments and processes are different, being mindful of the human element and its motivational properties can produce the desired effect.

"Good coaches have seen this, and we have research that shows it's being doing in the factory floor as well," said Schultz. "You want your team to have not just good or average—or even great players—that can play well no matter where they are.

"To get that extra bit, you want to find the good or great players who will perform better around other great players."

Jamie Hanlon | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>