Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Fancier the Cortex, the Smarter the Brain?

21.07.2009
Why are some people smarter than others?

In a new article in Current Directions in Psychological Science, a journal of the Association for Psychological Science, Eduardo Mercado III from the University at Buffalo, The State University of New York, describes how certain aspects of brain structure and function help determine how easily we learn new things, and how learning capacity contributes to individual differences in intelligence.

Cognitive plasticity is the capacity to learn and improve cognitive skills such as solving problems and remembering events. Mercado argues that the structural basis of cognitive plasticity is the cortical module. Cortical modules are vertical columns of interconnected neuronal cells. Across different areas of the cerebral cortex, these columns vary in the number and diversity of neurons they contain. Identifying how cortical modules help us learn cognitive skills may help explain why variations in this capacity occur — that is, why people learn skills at different rates and why our ability to learn new skills changes as we age.

Studies examining a number of different species have shown that, on average, a larger cortex predicts greater intellectual capacity. The source of this correlation is unclear, but Mercado believes that a "more expansive cortex provides more space within which a larger quantity and greater diversity of cortical modules can be distributed." In other words, Mercado notes that when it comes to intellectual potential, it is not the absolute or even relative size that is important, but how many cortical modules (with various types of neurons) are available. These features of cortical organization and function determine how effectively our brain distinguishes events. This ability to differentiate events may be what enables us to learn cognitive skills.

One implication of this proposal is that experience can be as important as genetics in determining intellectual capacity. Specifically, structural changes of cortical modules generated by development and learning experiences may also contribute to individual differences in intelligence. As these networks of neurons develop over time, their diversity increases, leading to further increases in cognitive plasticity.

This research has important implications for improving educational techniques and can potentially lead to new methods for rehabilitating patients suffering from brain damage. In addition, understanding how cortical modules function may lead to new ways of increasing intelligence. However, Mercado cautions that "new technologies for increasing cognitive plasticity have ethical implications far beyond those raised by doping in sports." He concludes, "The phrase 'changing your mind' may soon take on a whole new meaning."

For more information about this report, please contact Eduardo Mercado III (emiii@buffalo.edu)

Current Directions in Psychological Science, a journal of the Association for Psychological Science, publishes concise reviews spanning all of scientific psychology and its applications.For a copy of the article "Cognitive Plasticity and Cortical Modules" and access to other Current Directions in Psychological Science research findings, please contact Barbara Isanski at 202-293-9300 or bisanski@psychologicalscience.org.

Barbara Isanski | EurekAlert!
Further information:
http://www.psychologicalscience.org

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>