Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

All in the family: Lower back disease may be in your genes

03.02.2011
New study indicates predisposition to lumbar disc disease could be inherited

Symptomatic lumbar disc disease, a condition caused by degeneration or herniation of the discs of the lower spine, may be inherited, according to a new study published in the Journal of Bone and Joint Surgery (JBJS).

"Previous studies, including studies of twin siblings and subsequent genetic marker studies, have suggested a genetic predisposition for the development of symptomatic lumbar disc disease but have been limited by a small number of patients," noted study author Alpesh A. Patel, MD FACS, assistant professor of orthopaedic surgery at the University of Utah School of Medicine. "The results of this study provide evidence based on a population of more than 2 million people, indicating that there likely is a genetic component in the development of this disease. Additionally, the factors that differentiate a symptomatic disc from a non-painful disc may also be affected by genetics."

Study Details:

The researchers used data contained in the Utah Population Database, a public information repository containing health and genealogic data of more than 2 million Utah residents, examining health and family records of 1,264 individuals with lumbar disc disease, defined as either lumbar disc degeneration or lumbar disc herniation.

To measure how closely patients were related, the researchers used the Genealogical Index of Familiaity, which compares the average relatedness of affected individuals with expected relatedness in the general population.

Relatedness is measured by generations or degrees:

first-degree relatives (or immediate family) including parents, offspring and siblings;

second-degree including grandchildren, grandparents, uncles, aunts, nieces, nephews, and half-siblings; and

third-degree comprising great-grandchildren, great-grandparents, great-aunts and great-uncles, grandnieces and grandnephews and first cousins.

In this study, only patients with at least three generations of genealogical data in the database were included.

The researchers also determined and calculated the Relative Risk (RR) for relatives. This measure defines the risk of lumbar disc disease among family members of patients compared to individuals without disease.

Important Findings:
Individuals with lumbar disc disease were more likely to have family members with disc disease.
Relative risk for lumbar disc disease was significantly elevated in both close and distant relatives.

The combination of the two findings, given the large patient population, strongly supports a genetic basis to symptomatic lumbar disc disease.

"Although excess risk in the immediate family might indicate evidence of a genetic contribution, it could also simply indicate shared environment risks or household exposure that may be contributing to the disease," Dr. Patel noted. "Conversely, excess risks in second and third-degree relatives strongly support a genetic contribution to disease, given the measurable genetic sharing in these more distant relatives and the relative absence of shared household risks."

"There are limitations to our study. We could not measure disease severity or response to treatment. Furthermore, the population of Utah is genetically representative of a US or North European background. As such, this study does not prove a purely genetic basis for disease but suggests that it may play an important role." Dr. Patel noted. "With additional data, this hypothesis can be tested with larger sample sizes."

According to data from the American Academy of Orthopaedic Surgeons (AAOS), back pain is a common problem, and in 2008, attracted more than 12 million physician visits. Dr. Patel said identifying the factors that contribute to the disease can have far-reaching implications.

"Lumbar disc disease is likely due to a number of factors, including mechanical stresses to the spine, age-dependent disc degeneration, biochemical factors and genetics," he said. "This study identified an inheritable predisposition to the development of symptomatic lumbar disc disease and also identified high-risk families in the Utah population, which can be studied to identify genes responsible for this predisposition. Identification of these specific genes may help in the future development of drugs or other interventions to prevent and/or treat lumbar disc disease in the public at large."

Disclosure: The study authors have nothing related to this study to disclose.

Lauren Pearson | EurekAlert!
Further information:
http://www.aaos.org

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>