Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Familial Danish Dementia shares similarities to Alzheimer's disease

15.04.2010
In a study published in the Proceedings of the National Academy of Sciences (PNAS) USA, researchers in the Department of Cellular Neurology at the Hertie- Institute for Clinical Brain Research (University of Tübingen, Germany) succeeded to develop a mouse model for the rare but fatal Familial Danish Dementia.

The transgenic model recapitulates many features of the human disease and proves to be valuable for further research into the disease and for the development of treatment strategies. Although this is an achievement in itself, the authors recognize the implications of their results in relation to Alzheimer's Disease - namely that it is the misfolding of proteins into amyloid structures in the brain that leads to neuronal dysfunction and dementia.

Familial Danish dementia (FDD) is a rare familial disorder with an onset before the age of 30. In some patients visual symptoms and perceptive hearing loss is followed by cerebellar ataxia. The more obvious progressive dementia symptoms occur later and patients typically die between age of 40 and 60.

The cause for the disease is a defect in the BRI2 gene, which results in the misfolding and accumulation of a misfolded protein in the brains of FDD patients. The accumulated misfolded protein has a characteristic three-dimensional structure, a so-called amyloid structure.

The deposition of proteins with amyloid structures is not only a characteristic of FDD but is also seen in Alzheimer's Disease (AD) and various cerebral amyloid angiopathies (CAA). The accumulation of amyloid around the walls of blood vessels in the brain is the cause for the hemorrhagic strokes in CAA and is believed to play a central role in AD. Most of the current AD therapeutic trials target the formation and deposition of amyloidogenic proteins in the brains of AD patients.

Janaky Coomaraswamy and colleagues in the laboratory of Mathias Jucker at the Hertie-Institute have now developed a mouse model for FDD and show that the amyloid in FDD (the Danish-amyloid) and the amyloid in AD (the Beta-amyloid) both induce very similar neurodegenerative, neuroinflammatory, and vascular changes. Both Danish-amyloid and Beta-amyloid also induce so-called neurofibrillary tangles, another hallmark lesion of FDD and AD.

The study suggests common disease mechanisms for FDD and AD. Moreover, results suggest that therapies targeting the amyloid structure of the misfolded proteins may also be valuable treatments for both FDD and AD. With this new mouse model in hand, the scientists at the Hertie-Institute are now in a position to test such hypotheses and to develop a therapy for the rare but devastating FDD.

Title of the original publication:
Modeling Familial Danish Dementia in mice supports the concept of the amyloid hypothesis of Alzheimer's disease.
Coomaraswamy J, Kilger E, Wölfing H, Schäfer S, Kaeser SA, Wegenast-Braun BM, Hefendehl JK, Wolburg H, Mazzella M, Ghiso J, Goedert M, Akiyama H, Garcia-Sierra F, Wolfer DP, Mathews PM, Jucker M (2010).

Proceedings of the National Academy of Sciences (PNAS) published ahead of print April 12, 2010, doi:10.1073/pnas.1001056107

Contact
Universitätsklinikum Tübingen, Zentrum für Neurologie
Hertie-Institut für klinische Hirnforschung(HIH)
Partnerstandort Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE)
Professor Dr. Mathias Jucker
Tel.:07071-29-86863
E-Mail: mathias.jucker@uni-tuebingen.de
Kirstin Ahrens
Pressereferentin
Hertie-Institut für klinische Hirnforschung (HIH)
Tel.: 07073-500724
Mobil: 0173-300 53 96
E-Mail: mail@kirstin-ahrens.de

Kirstin Ahrens | idw
Further information:
http://www.hih-tuebingen.de

More articles from Studies and Analyses:

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Disarray in the brain
18.12.2017 | Universität zu Lübeck

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>