Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Familial Danish Dementia shares similarities to Alzheimer's disease

15.04.2010
In a study published in the Proceedings of the National Academy of Sciences (PNAS) USA, researchers in the Department of Cellular Neurology at the Hertie- Institute for Clinical Brain Research (University of Tübingen, Germany) succeeded to develop a mouse model for the rare but fatal Familial Danish Dementia.

The transgenic model recapitulates many features of the human disease and proves to be valuable for further research into the disease and for the development of treatment strategies. Although this is an achievement in itself, the authors recognize the implications of their results in relation to Alzheimer's Disease - namely that it is the misfolding of proteins into amyloid structures in the brain that leads to neuronal dysfunction and dementia.

Familial Danish dementia (FDD) is a rare familial disorder with an onset before the age of 30. In some patients visual symptoms and perceptive hearing loss is followed by cerebellar ataxia. The more obvious progressive dementia symptoms occur later and patients typically die between age of 40 and 60.

The cause for the disease is a defect in the BRI2 gene, which results in the misfolding and accumulation of a misfolded protein in the brains of FDD patients. The accumulated misfolded protein has a characteristic three-dimensional structure, a so-called amyloid structure.

The deposition of proteins with amyloid structures is not only a characteristic of FDD but is also seen in Alzheimer's Disease (AD) and various cerebral amyloid angiopathies (CAA). The accumulation of amyloid around the walls of blood vessels in the brain is the cause for the hemorrhagic strokes in CAA and is believed to play a central role in AD. Most of the current AD therapeutic trials target the formation and deposition of amyloidogenic proteins in the brains of AD patients.

Janaky Coomaraswamy and colleagues in the laboratory of Mathias Jucker at the Hertie-Institute have now developed a mouse model for FDD and show that the amyloid in FDD (the Danish-amyloid) and the amyloid in AD (the Beta-amyloid) both induce very similar neurodegenerative, neuroinflammatory, and vascular changes. Both Danish-amyloid and Beta-amyloid also induce so-called neurofibrillary tangles, another hallmark lesion of FDD and AD.

The study suggests common disease mechanisms for FDD and AD. Moreover, results suggest that therapies targeting the amyloid structure of the misfolded proteins may also be valuable treatments for both FDD and AD. With this new mouse model in hand, the scientists at the Hertie-Institute are now in a position to test such hypotheses and to develop a therapy for the rare but devastating FDD.

Title of the original publication:
Modeling Familial Danish Dementia in mice supports the concept of the amyloid hypothesis of Alzheimer's disease.
Coomaraswamy J, Kilger E, Wölfing H, Schäfer S, Kaeser SA, Wegenast-Braun BM, Hefendehl JK, Wolburg H, Mazzella M, Ghiso J, Goedert M, Akiyama H, Garcia-Sierra F, Wolfer DP, Mathews PM, Jucker M (2010).

Proceedings of the National Academy of Sciences (PNAS) published ahead of print April 12, 2010, doi:10.1073/pnas.1001056107

Contact
Universitätsklinikum Tübingen, Zentrum für Neurologie
Hertie-Institut für klinische Hirnforschung(HIH)
Partnerstandort Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE)
Professor Dr. Mathias Jucker
Tel.:07071-29-86863
E-Mail: mathias.jucker@uni-tuebingen.de
Kirstin Ahrens
Pressereferentin
Hertie-Institut für klinische Hirnforschung (HIH)
Tel.: 07073-500724
Mobil: 0173-300 53 96
E-Mail: mail@kirstin-ahrens.de

Kirstin Ahrens | idw
Further information:
http://www.hih-tuebingen.de

More articles from Studies and Analyses:

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

nachricht Urbanization to convert 300,000 km2 of prime croplands
27.12.2016 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>