Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Familial Danish Dementia shares similarities to Alzheimer's disease

15.04.2010
In a study published in the Proceedings of the National Academy of Sciences (PNAS) USA, researchers in the Department of Cellular Neurology at the Hertie- Institute for Clinical Brain Research (University of Tübingen, Germany) succeeded to develop a mouse model for the rare but fatal Familial Danish Dementia.

The transgenic model recapitulates many features of the human disease and proves to be valuable for further research into the disease and for the development of treatment strategies. Although this is an achievement in itself, the authors recognize the implications of their results in relation to Alzheimer's Disease - namely that it is the misfolding of proteins into amyloid structures in the brain that leads to neuronal dysfunction and dementia.

Familial Danish dementia (FDD) is a rare familial disorder with an onset before the age of 30. In some patients visual symptoms and perceptive hearing loss is followed by cerebellar ataxia. The more obvious progressive dementia symptoms occur later and patients typically die between age of 40 and 60.

The cause for the disease is a defect in the BRI2 gene, which results in the misfolding and accumulation of a misfolded protein in the brains of FDD patients. The accumulated misfolded protein has a characteristic three-dimensional structure, a so-called amyloid structure.

The deposition of proteins with amyloid structures is not only a characteristic of FDD but is also seen in Alzheimer's Disease (AD) and various cerebral amyloid angiopathies (CAA). The accumulation of amyloid around the walls of blood vessels in the brain is the cause for the hemorrhagic strokes in CAA and is believed to play a central role in AD. Most of the current AD therapeutic trials target the formation and deposition of amyloidogenic proteins in the brains of AD patients.

Janaky Coomaraswamy and colleagues in the laboratory of Mathias Jucker at the Hertie-Institute have now developed a mouse model for FDD and show that the amyloid in FDD (the Danish-amyloid) and the amyloid in AD (the Beta-amyloid) both induce very similar neurodegenerative, neuroinflammatory, and vascular changes. Both Danish-amyloid and Beta-amyloid also induce so-called neurofibrillary tangles, another hallmark lesion of FDD and AD.

The study suggests common disease mechanisms for FDD and AD. Moreover, results suggest that therapies targeting the amyloid structure of the misfolded proteins may also be valuable treatments for both FDD and AD. With this new mouse model in hand, the scientists at the Hertie-Institute are now in a position to test such hypotheses and to develop a therapy for the rare but devastating FDD.

Title of the original publication:
Modeling Familial Danish Dementia in mice supports the concept of the amyloid hypothesis of Alzheimer's disease.
Coomaraswamy J, Kilger E, Wölfing H, Schäfer S, Kaeser SA, Wegenast-Braun BM, Hefendehl JK, Wolburg H, Mazzella M, Ghiso J, Goedert M, Akiyama H, Garcia-Sierra F, Wolfer DP, Mathews PM, Jucker M (2010).

Proceedings of the National Academy of Sciences (PNAS) published ahead of print April 12, 2010, doi:10.1073/pnas.1001056107

Contact
Universitätsklinikum Tübingen, Zentrum für Neurologie
Hertie-Institut für klinische Hirnforschung(HIH)
Partnerstandort Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE)
Professor Dr. Mathias Jucker
Tel.:07071-29-86863
E-Mail: mathias.jucker@uni-tuebingen.de
Kirstin Ahrens
Pressereferentin
Hertie-Institut für klinische Hirnforschung (HIH)
Tel.: 07073-500724
Mobil: 0173-300 53 96
E-Mail: mail@kirstin-ahrens.de

Kirstin Ahrens | idw
Further information:
http://www.hih-tuebingen.de

More articles from Studies and Analyses:

nachricht Do microplastics harbour additional risks by colonization with harmful bacteria?
05.04.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>