Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Familial Danish Dementia shares similarities to Alzheimer's disease

In a study published in the Proceedings of the National Academy of Sciences (PNAS) USA, researchers in the Department of Cellular Neurology at the Hertie- Institute for Clinical Brain Research (University of Tübingen, Germany) succeeded to develop a mouse model for the rare but fatal Familial Danish Dementia.

The transgenic model recapitulates many features of the human disease and proves to be valuable for further research into the disease and for the development of treatment strategies. Although this is an achievement in itself, the authors recognize the implications of their results in relation to Alzheimer's Disease - namely that it is the misfolding of proteins into amyloid structures in the brain that leads to neuronal dysfunction and dementia.

Familial Danish dementia (FDD) is a rare familial disorder with an onset before the age of 30. In some patients visual symptoms and perceptive hearing loss is followed by cerebellar ataxia. The more obvious progressive dementia symptoms occur later and patients typically die between age of 40 and 60.

The cause for the disease is a defect in the BRI2 gene, which results in the misfolding and accumulation of a misfolded protein in the brains of FDD patients. The accumulated misfolded protein has a characteristic three-dimensional structure, a so-called amyloid structure.

The deposition of proteins with amyloid structures is not only a characteristic of FDD but is also seen in Alzheimer's Disease (AD) and various cerebral amyloid angiopathies (CAA). The accumulation of amyloid around the walls of blood vessels in the brain is the cause for the hemorrhagic strokes in CAA and is believed to play a central role in AD. Most of the current AD therapeutic trials target the formation and deposition of amyloidogenic proteins in the brains of AD patients.

Janaky Coomaraswamy and colleagues in the laboratory of Mathias Jucker at the Hertie-Institute have now developed a mouse model for FDD and show that the amyloid in FDD (the Danish-amyloid) and the amyloid in AD (the Beta-amyloid) both induce very similar neurodegenerative, neuroinflammatory, and vascular changes. Both Danish-amyloid and Beta-amyloid also induce so-called neurofibrillary tangles, another hallmark lesion of FDD and AD.

The study suggests common disease mechanisms for FDD and AD. Moreover, results suggest that therapies targeting the amyloid structure of the misfolded proteins may also be valuable treatments for both FDD and AD. With this new mouse model in hand, the scientists at the Hertie-Institute are now in a position to test such hypotheses and to develop a therapy for the rare but devastating FDD.

Title of the original publication:
Modeling Familial Danish Dementia in mice supports the concept of the amyloid hypothesis of Alzheimer's disease.
Coomaraswamy J, Kilger E, Wölfing H, Schäfer S, Kaeser SA, Wegenast-Braun BM, Hefendehl JK, Wolburg H, Mazzella M, Ghiso J, Goedert M, Akiyama H, Garcia-Sierra F, Wolfer DP, Mathews PM, Jucker M (2010).

Proceedings of the National Academy of Sciences (PNAS) published ahead of print April 12, 2010, doi:10.1073/pnas.1001056107

Universitätsklinikum Tübingen, Zentrum für Neurologie
Hertie-Institut für klinische Hirnforschung(HIH)
Partnerstandort Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE)
Professor Dr. Mathias Jucker
Kirstin Ahrens
Hertie-Institut für klinische Hirnforschung (HIH)
Tel.: 07073-500724
Mobil: 0173-300 53 96

Kirstin Ahrens | idw
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>