Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

False Starts Can Sneak by in Women's Sprinting

21.10.2011
Olympic timing procedures don't accurately detect false starts by female sprinters, according to a new analysis by University of Michigan researchers.

Under the current rules, a woman can purposely anticipate the gun by up to 20 milliseconds, or one-fiftieth of a second, without getting called for a false start, the researchers say.

"This is unfair to the other women in the race because a medal can be won or lost in 20 milliseconds," said James Ashton-Miller, the Albert Schultz Collegiate Research Professor in the College of Engineering, the Institute of Gerontology and the School of Kinesiology.

The findings, published in the Oct. 19 edition of PLoS One (Public Library of Science), have implications beyond competitive sports. They provide insights into the fastest whole-body reaction times humans are capable of, and they could possibly inform automobile brake engineering, the researchers say.

Olympic officials use the same criteria to disqualify both male and female sprinters for jumping the gun. A "false start" occurs if an athlete applies an estimated 25 kilogram force to the starting blocks within a tenth of a second (100 milliseconds) of the gun. Why 100 milliseconds? That was thought to be the fastest possible human reaction time. It's a threshold largely based on a 1990 study of eight Finnish sprinters, none of whom were Olympians and none of whom were women.

Ashton-Miller and his colleagues set out to examine: the fastest possible reaction time of an Olympic athlete; whether elite male and female sprinters had similar reaction times; and whether the procedure used to measure reaction time was appropriate for both sexes.

The researchers analyzed the fastest reaction times of the 425 male and female sprinters who competed in the 2008 Beijing Olympics. They coupled this with previous studies in which they measured how rapidly men and women can push on a pedal using ankle extensor muscle strength.

It turns out that the threshold of 100 milliseconds is appropriate, the researchers found. Using statistical methods, they calculated that it is highly unlikely that a man can react faster than 109 milliseconds or a woman faster than 121 milliseconds at the Olympics. These numbers appear, at first, to show that men react faster than women. But Ashton-Miller and his colleagues don't believe that's the case.

Because men have more powerful leg muscles, they can more quickly develop the amount of force necessary for their movement to register. By requiring women to develop the same force as men on the start blocks, the current method makes women appear to have slower reaction times, Ashton-Miller said.

"This study suggests that the method used in the Olympic Games to detect a false start is male-oriented," Ashton-Miller said. "A woman who gets into the 100- to 120-millisecond window is really false starting, but under the present measurement method she wouldn't get penalized for that false start."

The researchers are calling for changes to be made in timing procedures before the London 2012 summer games.

"In terms of the Olympics, it's important for races to be fair. One way to address this would be to lower the force threshold for females," said David Lipps, a Ph.D. student in the Department of Biomedical Engineering.

Male sprinters have 21 percent greater ankle extensor strength than female sprinters. As such, the researchers recommend reducing the allowable increase in force on the starting block for women to a 19.4 kilogram force.

And, Ashton-Miller suggests, perhaps future automobiles with brake-assist features should be notified whether the driver is male or female.

"The study suggests that in the future, automobiles should "know" whether it is a man or a woman that gets into the driver's seat," Ashton-Miller said. "If the auto "knows" a woman is driving, the sensitivity of the braking system should be adjusted to be greater so that women can react as fast as men as men can in an emergency."

Full text of paper: http://dx.plos.org/10.1371/journal.pone.0026141

James Ashton-Miller: https://me-web2.engin.umich.edu/pub/directory/bio?uniqname=jaam

David Lipps: http://me.engin.umich.edu/brl/dlipps.shtml

Nicole Casal Moore | Newswise Science News
Further information:
http://www.umich.edu

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>