Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Face recognition ability inherited separately from IQ

20.01.2010
Finding supports modularity of the mind theory

Recognizing faces is an important social skill, but not all of us are equally good at it. Some people are unable to recognize even their closest friends (a condition called prosopagnosia), while others have a near-photographic memory for large numbers of faces. Now a twin study by collaborators at MIT and in Beijing shows that face recognition is heritable, and that it is inherited separately from general intelligence or IQ.

This finding plays into a long-standing debate on the nature of mind and intelligence. The prevailing generalist theory, upon which the concept of IQ is based, holds that if people are smart in one area they tend to be smart in other areas, so if you are good in math you are also more likely to be good at literature and history. IQ is strongly influenced by heredity, suggesting the existence of "generalist genes" for cognition.

Yet some cognitive abilities seem distinct from overall IQ, as happens when a person who is brilliant with numbers or music is tone-deaf socially or linguistically. Also, many specialized cognitive skills, including recognizing faces, appear to be localized to specialized brain regions. Such evidence supports a modularity hypothesis, in which the mind is like a Swiss Army knife — a general-purpose tool with special-purpose devices.

"Our study provides the first evidence supporting the modularity hypothesis from a genetic perspective," said lead author Jia Liu, Professor of Cognitive Neuroscience at Beijing Normal University in China of the study published in the Jan. 7 issue of Current Biology. "That is, some cognitive abilities, like face recognition, are shaped by specialist genes rather than generalist genes."

“Our finding may help explain why we see such disparities of cognitive abilities within the same person in certain heritable disorders,” added co-author Nancy Kanwisher of the McGovern Institute for Brain Research at MIT, where Liu studied before moving to Beijing. In dyslexia, for example, a person with normal IQ has deficits in reading, while in Williams Syndrome, people have low IQ but excellent language skills.

How they did it: For the study, Liu and his colleagues recruited 102 pairs of identical twins and 71 pairs of fraternal twins aged 7 to 19 from Beijing schools. Because identical twins have 100 percent of their genes in common while fraternal twins have just 50 percent, traits that are strongly hereditary are more similar between identical twins than between fraternal twins. (Identical twins still show variability because of the influence of environmental factors.)

Participants were shown black-and-white images of 20 different faces on a computer screen for one second per image. They were then shown 10 of the original faces mixed with 20 new faces and asked which ones they had seen before. The scores were more closely matched between identical twins than fraternal twins, and Liu attributed 39 percent of the variance between individuals to genetic effects. Further tests confirmed that these differences were specific to face recognition, and did not reflect differences in sharpness of vision, general object recognition abilities, memory or other cognitive processes.

In an independent sample of 321 students, the researchers found that face recognition ability was not correlated with IQ, indicating that the genes that affect face recognition ability are distinct from those that affect IQ. Liu and Kanwisher are now investigating whether other cognitive abilities, such as language processing, understanding numbers, or navigation, are also heritable and independent from general intelligence and other cognitive abilities.

Researchers at the Beijing Normal University and Graduate University of the Chinese Academy of Sciences contributed to this research: Qi Zhu, Yiying Song, Siyuan Hu, Xiaobai Li, Moqian Tian, Zonglei Zhen and Qi Dong.

Next steps: In addition to providing new insight into the structure of the mind, this work could shed light on the underlying causes of developmental disorders like autism and dyslexia. "The heritability of these cognitively specific diseases suggests that some genes have specific cognitive effects, but it’s a big mystery how genes produce cognitively specific effects," said Kanwisher.

Source: Zhu Q, Song Y, Hu S, Li X, Tian M, Zhen Z, Dong Q, Kanwisher N, Liu J. Heritability of the specific cognitive ability of face perception. Current Biology (2009). doi: 10.1016/j.cub.2009.11.067

Funding: The National Natural Science Foundation of China, the Chinese Academy of Sciences, the Ministry of Science and Technology of China, the Ministry of Education of China, the National Eye Institute, the National Center for Research Resources, and the Mental Illness and Neuroscience Discovery Institute.

Jennifer Hirsch | EurekAlert!
Further information:
http://www.mit.edu

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>