Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Face recognition ability inherited separately from IQ

20.01.2010
Finding supports modularity of the mind theory

Recognizing faces is an important social skill, but not all of us are equally good at it. Some people are unable to recognize even their closest friends (a condition called prosopagnosia), while others have a near-photographic memory for large numbers of faces. Now a twin study by collaborators at MIT and in Beijing shows that face recognition is heritable, and that it is inherited separately from general intelligence or IQ.

This finding plays into a long-standing debate on the nature of mind and intelligence. The prevailing generalist theory, upon which the concept of IQ is based, holds that if people are smart in one area they tend to be smart in other areas, so if you are good in math you are also more likely to be good at literature and history. IQ is strongly influenced by heredity, suggesting the existence of "generalist genes" for cognition.

Yet some cognitive abilities seem distinct from overall IQ, as happens when a person who is brilliant with numbers or music is tone-deaf socially or linguistically. Also, many specialized cognitive skills, including recognizing faces, appear to be localized to specialized brain regions. Such evidence supports a modularity hypothesis, in which the mind is like a Swiss Army knife — a general-purpose tool with special-purpose devices.

"Our study provides the first evidence supporting the modularity hypothesis from a genetic perspective," said lead author Jia Liu, Professor of Cognitive Neuroscience at Beijing Normal University in China of the study published in the Jan. 7 issue of Current Biology. "That is, some cognitive abilities, like face recognition, are shaped by specialist genes rather than generalist genes."

“Our finding may help explain why we see such disparities of cognitive abilities within the same person in certain heritable disorders,” added co-author Nancy Kanwisher of the McGovern Institute for Brain Research at MIT, where Liu studied before moving to Beijing. In dyslexia, for example, a person with normal IQ has deficits in reading, while in Williams Syndrome, people have low IQ but excellent language skills.

How they did it: For the study, Liu and his colleagues recruited 102 pairs of identical twins and 71 pairs of fraternal twins aged 7 to 19 from Beijing schools. Because identical twins have 100 percent of their genes in common while fraternal twins have just 50 percent, traits that are strongly hereditary are more similar between identical twins than between fraternal twins. (Identical twins still show variability because of the influence of environmental factors.)

Participants were shown black-and-white images of 20 different faces on a computer screen for one second per image. They were then shown 10 of the original faces mixed with 20 new faces and asked which ones they had seen before. The scores were more closely matched between identical twins than fraternal twins, and Liu attributed 39 percent of the variance between individuals to genetic effects. Further tests confirmed that these differences were specific to face recognition, and did not reflect differences in sharpness of vision, general object recognition abilities, memory or other cognitive processes.

In an independent sample of 321 students, the researchers found that face recognition ability was not correlated with IQ, indicating that the genes that affect face recognition ability are distinct from those that affect IQ. Liu and Kanwisher are now investigating whether other cognitive abilities, such as language processing, understanding numbers, or navigation, are also heritable and independent from general intelligence and other cognitive abilities.

Researchers at the Beijing Normal University and Graduate University of the Chinese Academy of Sciences contributed to this research: Qi Zhu, Yiying Song, Siyuan Hu, Xiaobai Li, Moqian Tian, Zonglei Zhen and Qi Dong.

Next steps: In addition to providing new insight into the structure of the mind, this work could shed light on the underlying causes of developmental disorders like autism and dyslexia. "The heritability of these cognitively specific diseases suggests that some genes have specific cognitive effects, but it’s a big mystery how genes produce cognitively specific effects," said Kanwisher.

Source: Zhu Q, Song Y, Hu S, Li X, Tian M, Zhen Z, Dong Q, Kanwisher N, Liu J. Heritability of the specific cognitive ability of face perception. Current Biology (2009). doi: 10.1016/j.cub.2009.11.067

Funding: The National Natural Science Foundation of China, the Chinese Academy of Sciences, the Ministry of Science and Technology of China, the Ministry of Education of China, the National Eye Institute, the National Center for Research Resources, and the Mental Illness and Neuroscience Discovery Institute.

Jennifer Hirsch | EurekAlert!
Further information:
http://www.mit.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>