Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Extreme weather conditions cost EU’s transport system at least €15 billion annually

05.07.2012
A study carried out by VTT Technical Research Centre of Finland indicates that extreme weather conditions cost EU transport system at least €15 billion a year.

Currently, the greatest costs incurred are from road accidents, with the associated material damage and psychological suffering. However, costs arising from accidents are expected to decrease in volume, though time-related costs attributable to delays are projected to increase. In part, this is due to climate change, whose impact on extreme weather phenomena was addressed in the study, and because of consequent costs.

In the study conducted by VTT and EWENT project partners, researchers calculated the costs, caused by extreme weather phenomena for the transport system, its users and customers of freight carriers in the 27 EU member states. This marks the first time calculations have been completed on this scale and scope. The study shows that the mode of traffic most vulnerable to extreme weather is road traffic. It continues to have a higher volume than the other modes, with the additional factor of not being centralised or professionally controlled, in contrast to rail or aviation. In particular, the consequences of extreme weather are visible in road traffic in the form of increased road accidents and the cost arising from them. In other traffic modes, far more likely than accidents will be time-related costs with a variety of causes, typically delays. Aviation in particular is prone to time-related costs in extreme weather. The annual net cost in European aviation is on the order of billions of euros, borne by travellers and airline operators. Surprisingly, infrastructure related costs did not have a lion's share of the total costs.

In road traffic, heavy time-related costs are particularly frequent in freight traffic. At EU level, annual losses, measured to be around 6 € billions annually, are suffered by the customers of freight carriers as a result of time-related costs, and here is a risk of continued growth in costs. This is due to the growth in volumes of freight-carrying traffic, which is forecast at 1-2 per cent a year. Furthermore, improved efficiency in production chains accentuates the importance of adherence to timetables, creating further potential for growth in time-related costs.

Passengers in road traffic will incur time-related costs, as extreme weather conditions slow down traffic, keeping people away from productive work. At the same time, however, road accidents will be on the decline in the EU. VTT's researchers estimate that improvements to vehicle safety, along with the warming caused by climate change, may reduce the cost arising from road accidents by as much as half by 2040 -2070.

The impact of climate change is difficult to predict

However, the impact of climate change on extreme weather conditions, along with the cost arising from such conditions, is hard to estimate with any accuracy. In the North, where most costs incurred by traffic are attributable to snow and ice, heavy snowfalls may actually become more frequent, despite climatic warming. In Southern Europe, one cost factor to be reckoned, but which is studied far too little, with in the future may be heat waves, leading to decreased pedestrian traffic and cycling, and to increased motorised traffic. Moreover, as droughts grow in frequency, so will sand storms and dust storms, and as heat waves are followed by torrential rains, soil will become less firm, creating potential for landslides.

The traffic mode least affected by extreme weather is sea traffic. However, transport by sea is no solution to the problem of the time-related costs, experienced by European transport traffic, because cost-efficiency continues to be the factor that dictates the choice of transport mode. Bulk freight is transported by rail or waterways, with lower average speeds but a better guarantee against the vagaries of weather. High-priced freight, sensitive to schedule disruptions, is transported by road and air, which are fast transport modes but susceptible to the whims of extreme weather.

In conditions that are extreme but at the moderate end of the scale, time-related costs can be cut by means of intensified maintenance measures and improved communications. Unfortunately, the consequences of genuinely extreme weather phenomena are hard to predict and prevent. A decrease in traffic volume would have the most beneficial impact, brought about through improved mass transport, virtual presence communications, and remote work. As a bonus, this would make traffic more manageable not just for professional drivers; it would also help minimise the environmental impact created by road traffic.

The report "The costs of extreme weather for the European transport systems. EWENT project D4", is available at http://www.vtt.fi/inf/pdf/technology/2012/T36.pdf

EWENT consortium includes VTT, German Aerospace Center, Institute of Transport Economics (NO), Foreca Consulting Ltd. (FI), Finnish Meteorological Institute, Meteorological Service of Cyprus, via donau (AT), European Severe Storms Laboratory (DE), and World Meteorological Organisation (UN). EWENT is financed by the European Union under the 7th Framework Programme.

Marko Nokkala | EurekAlert!
Further information:
http://www.vtt.fi

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>