Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Extended sleep improves the athletic performance of collegiate basketball players

01.07.2011
Stanford study is the first to document how sleep extension affects the performance of actively competing athletes

A study in the July 1 issue of the journal SLEEP shows that sleep extension is beneficial to athletic performance, reaction time, vigor, fatigue and mood in collegiate basketball players. The study is the first to document sleep extension and the athletic performance of actively competing athletes.

Results of objective measurements show that the mean total sleep time per night during sleep extension was 110.9 minutes longer than at baseline. Indices of athletic performance specific to basketball were measured after every practice to assess changes in performance. Speed during 282-foot sprints improved significantly from 16.2 seconds at baseline to 15.5 seconds after sleep extension, and shooting accuracy increased significantly by nine percent on both free throws and three-point field goals. Subjects also reported improved overall ratings of physical and mental well-being during practices and games.

"Following multiple weeks of sleep extension, elite athletes demonstrated improvements in specific indicators of basketball athletic performance including higher shooting percentages and faster sprint times," said lead author Cheri D. Mah, MS, researcher at the Stanford Sleep Disorders Clinic and Research Laboratory in Stanford, Calif. "Subjects also demonstrated faster reaction time, decreased levels of daytime sleepiness, and mood improvements."

The study involved 11 healthy students on the Stanford University men's varsity basketball team and was conducted during two basketball seasons from 2005 to 2008. Participants had a mean age of 19 years and an average height of about six feet and four inches. Eight of the players were guards, two were forwards and one was a center.

Total sleep time was measured objectively by actigraphy. The players maintained their habitual sleep-wake schedule for a baseline period of two to four weeks during the NCAA basketball season, sleeping for an average of less than seven hours per night. The following period of sleep extension lasted five to seven weeks, during which the participants obtained as much nocturnal sleep as possible with a minimum goal of 10 hours in bed per night. Objective mean total sleep time during sleep extension was nearly 8.5 hours per night.

Participants shot 10 free throws from 15 feet, making an average of 7.9 shots at baseline and 8.8 shots at the end of the sleep extension period. They also attempted 15 three-point field goals, making an average of 10.2 shots at baseline and 11.6 shots after sleep extension. The timed sprint involved running from baseline to half-court and back to baseline, then the full 94-foot length of the court and back to baseline. Reaction time, levels of daytime sleepiness, and mood were monitored using the Psychomotor Vigilance Task, Epworth Sleepiness Scale and Profile of Mood States.

Mah said that she was especially intrigued to find that sleep extension was associated with improvements in diverse basketball skills.

"It was interesting to note that sleep extension significantly improved different measures of physical performance in basketball from shooting percentages to sprinting times," she said.

According to Mah, an athlete's nightly sleep requirement should be considered integral to attaining peak performance in all levels of sports. She offered these tips to help athletes improve their performance by maximizing their sleep:

Prioritize sleep as a part of your regular training regimen.

Extend nightly sleep for several weeks to reduce your sleep debt before competition.
Maintain a low sleep debt by obtaining a sufficient amount of nightly sleep (seven to nine hours for adults, nine or more hours for teens and young adults).

Keep a regular sleep-wake schedule, going to bed and waking up at the same times every day.

Take brief 20-30 minute naps to obtain additional sleep during the day, especially if drowsy.

Mah presented preliminary results from this study at SLEEP 2007, the 21st annual meeting of the Associated Professional Sleep Societies, in Minneapolis, Minn. The results are consistent with similar research she has performed at Stanford involving men and women who compete in other sports such as football, tennis, and swimming.

Although this was not an industry supported study, Philips Respironics loaned actigraphy devices to the study investigators.

Learn more about sleep and athletic performance from the American Academy of Sleep Medicine on the Sleep Education Blog at http://sleepeducation.blogspot.com/search/label/athletic%20performance.

The monthly, peer-reviewed, scientific journal SLEEP is published online by the Associated Professional Sleep Societies LLC, a joint venture of the American Academy of Sleep Medicine and the Sleep Research Society. The AASM is a professional membership society that is the leader in setting standards and promoting excellence in sleep medicine health care, education and research (www.aasmnet.org).

For a copy of the study, "The effects of sleep extension on the athletic performance of collegiate basketball players," or to arrange an interview with an AASM spokesperson, please contact Public Relations Coordinator Emilee McStay at 630-737-9700, ext. 9329, or emcstay@aasmnet.org.

Emilee McStay | EurekAlert!
Further information:
http://www.aasmnet.org

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>