Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Extended sleep improves the athletic performance of collegiate basketball players

Stanford study is the first to document how sleep extension affects the performance of actively competing athletes

A study in the July 1 issue of the journal SLEEP shows that sleep extension is beneficial to athletic performance, reaction time, vigor, fatigue and mood in collegiate basketball players. The study is the first to document sleep extension and the athletic performance of actively competing athletes.

Results of objective measurements show that the mean total sleep time per night during sleep extension was 110.9 minutes longer than at baseline. Indices of athletic performance specific to basketball were measured after every practice to assess changes in performance. Speed during 282-foot sprints improved significantly from 16.2 seconds at baseline to 15.5 seconds after sleep extension, and shooting accuracy increased significantly by nine percent on both free throws and three-point field goals. Subjects also reported improved overall ratings of physical and mental well-being during practices and games.

"Following multiple weeks of sleep extension, elite athletes demonstrated improvements in specific indicators of basketball athletic performance including higher shooting percentages and faster sprint times," said lead author Cheri D. Mah, MS, researcher at the Stanford Sleep Disorders Clinic and Research Laboratory in Stanford, Calif. "Subjects also demonstrated faster reaction time, decreased levels of daytime sleepiness, and mood improvements."

The study involved 11 healthy students on the Stanford University men's varsity basketball team and was conducted during two basketball seasons from 2005 to 2008. Participants had a mean age of 19 years and an average height of about six feet and four inches. Eight of the players were guards, two were forwards and one was a center.

Total sleep time was measured objectively by actigraphy. The players maintained their habitual sleep-wake schedule for a baseline period of two to four weeks during the NCAA basketball season, sleeping for an average of less than seven hours per night. The following period of sleep extension lasted five to seven weeks, during which the participants obtained as much nocturnal sleep as possible with a minimum goal of 10 hours in bed per night. Objective mean total sleep time during sleep extension was nearly 8.5 hours per night.

Participants shot 10 free throws from 15 feet, making an average of 7.9 shots at baseline and 8.8 shots at the end of the sleep extension period. They also attempted 15 three-point field goals, making an average of 10.2 shots at baseline and 11.6 shots after sleep extension. The timed sprint involved running from baseline to half-court and back to baseline, then the full 94-foot length of the court and back to baseline. Reaction time, levels of daytime sleepiness, and mood were monitored using the Psychomotor Vigilance Task, Epworth Sleepiness Scale and Profile of Mood States.

Mah said that she was especially intrigued to find that sleep extension was associated with improvements in diverse basketball skills.

"It was interesting to note that sleep extension significantly improved different measures of physical performance in basketball from shooting percentages to sprinting times," she said.

According to Mah, an athlete's nightly sleep requirement should be considered integral to attaining peak performance in all levels of sports. She offered these tips to help athletes improve their performance by maximizing their sleep:

Prioritize sleep as a part of your regular training regimen.

Extend nightly sleep for several weeks to reduce your sleep debt before competition.
Maintain a low sleep debt by obtaining a sufficient amount of nightly sleep (seven to nine hours for adults, nine or more hours for teens and young adults).

Keep a regular sleep-wake schedule, going to bed and waking up at the same times every day.

Take brief 20-30 minute naps to obtain additional sleep during the day, especially if drowsy.

Mah presented preliminary results from this study at SLEEP 2007, the 21st annual meeting of the Associated Professional Sleep Societies, in Minneapolis, Minn. The results are consistent with similar research she has performed at Stanford involving men and women who compete in other sports such as football, tennis, and swimming.

Although this was not an industry supported study, Philips Respironics loaned actigraphy devices to the study investigators.

Learn more about sleep and athletic performance from the American Academy of Sleep Medicine on the Sleep Education Blog at

The monthly, peer-reviewed, scientific journal SLEEP is published online by the Associated Professional Sleep Societies LLC, a joint venture of the American Academy of Sleep Medicine and the Sleep Research Society. The AASM is a professional membership society that is the leader in setting standards and promoting excellence in sleep medicine health care, education and research (

For a copy of the study, "The effects of sleep extension on the athletic performance of collegiate basketball players," or to arrange an interview with an AASM spokesperson, please contact Public Relations Coordinator Emilee McStay at 630-737-9700, ext. 9329, or

Emilee McStay | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>