Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Exposure to early evening sunlight in spring creates teenage night owls

27.07.2010
Field study demonstrates that extended daylight hours influence teens' sleeping patterns

In the spring, later sunset and extended daylight exposure delay bedtimes in teenagers, according to researchers at Rensselaer Polytechnic Institute's Lighting Research Center (LRC).

"Biologically, this increased exposure to early evening light in the spring delays the onset of nocturnal melatonin, a hormone that indicates to the body when it's nighttime," explains Mariana Figueiro, Ph.D., associate professor. "This extended exposure adds to the difficulties teens have falling asleep at a reasonable hour."

Over time when coupled with having to rise early for school, this delay in sleep onset may lead to teen sleep deprivation and mood changes, and increase risk of obesity and perhaps under-performance in school, according to Figueiro.

"This is a double-barreled problem for teenagers and their parents," says Figueiro. "In addition to the exposure to more evening daylight, many teens also contend with not getting enough morning light to stimulate the body's biological system, also delaying teens' bedtimes."

The new findings detailing the impact of early evening light in spring on melatonin onset and sleep times have just been published in Chronobiology International by Figueiro and LRC Director Mark Rea, Ph.D. The study found that 16 eighth-grade students from Algonquin Middle School in upstate New York experienced a delay in melatonin onset by an average of 20 minutes measured in one day in spring relative to one day in winter. Melatonin levels normally start rising two to three hours prior to a person falling asleep. The students also kept sleep logs as part of the study, which collectively showed a 16-minute average delay in reported sleep onset and a 15-minute average reduction in reported sleep duration measured in one day in spring relative to one day in winter.

Setting the Body's Clock

Patterns of light and dark are the main cues for synchronizing our internal biological clock with the 24-hour solar day. Daylight is rich in short-wavelength (blue) light, which maximally stimulates our biological clock. This internal clock is responsible for regulating the timing of our sleep and other daily biological cycles, called circadian rhythms.

The results of the Algonquin Middle School study demonstrated that it was the extended daylight hours due to the seasonal change, not evening electric lighting after dark in the home, that had the biggest impact on delayed sleeping patterns. According to Figueiro, these results underscore the importance of measuring the 24-hour circadian light and dark patterns in order to draw valid inferences from field studies of this kind.

"This latest study supplements previous work and supports the general hypothesis that the entire 24-hour pattern of light/dark exposure influences synchronization of the body's circadian clock with the solar day and thus influences teenagers' sleep/wake cycles," explains Figueiro. "As a general rule, teenagers should increase morning daylight exposure year round and decrease evening daylight exposure in the spring to help ensure they will get sufficient sleep before going to school."

Measuring "Circadian Light"

In the study, the Algonquin Middle School students were exposed to significantly more "circadian light" in the early evening during spring than in winter, resulting in both delayed melatonin onset and shorter self-reported sleep durations. Each subject wore a Daysimeter, a small, head-mounted device developed by the LRC to measure an individual's exposure to daily "circadian light," as well as rest and activity patterns. The definition of circadian light is based upon the potential for light to suppress melatonin synthesis at night, as opposed to measuring light in terms of how it stimulates the visual system.

This study, sponsored by the U.S. Green Building Council (USGBC) and, in part, by a grant from a Trans-National Institutes of Health Genes, Environment and Health Initiative (NIH-GEI), is the first to relate field measurements of circadian light exposures to a well-established circadian marker (the rise in evening melatonin levels) during two seasons of the year.

In a previous field study, also funded by USGBC and NIH-GEI and published in Neuroendocrinology Letters, Figueiro and Rea examined the impact of morning light on teen sleep habits and found that removing short-wavelength (blue) morning light resulted in a 30-minute delay in sleep onset by the end of a five-day period.

About the Lighting Research Center

The Lighting Research Center (LRC) is part of Rensselaer Polytechnic Institute of Troy, N.Y., and is the leading university-based research center devoted to lighting. The LRC offers the world's premier graduate education in lighting, including one- and two-year master's programs and a Ph.D. program. Since 1988 the LRC has built an international reputation as a reliable source for objective information about lighting technologies, applications, and products. The LRC also provides training programs for government agencies, utilities, contractors, lighting designers, and other lighting professionals. Visit www.lrc.rpi.edu.

Link to paper published in Chronobiology International: http://informahealthcare.com/eprint/eWR6wecNupmX9ZnhNRRT/full?tokenKey=

Mary Cimo | EurekAlert!
Further information:
http://www.rpi.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>