Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Exposure to early evening sunlight in spring creates teenage night owls

27.07.2010
Field study demonstrates that extended daylight hours influence teens' sleeping patterns

In the spring, later sunset and extended daylight exposure delay bedtimes in teenagers, according to researchers at Rensselaer Polytechnic Institute's Lighting Research Center (LRC).

"Biologically, this increased exposure to early evening light in the spring delays the onset of nocturnal melatonin, a hormone that indicates to the body when it's nighttime," explains Mariana Figueiro, Ph.D., associate professor. "This extended exposure adds to the difficulties teens have falling asleep at a reasonable hour."

Over time when coupled with having to rise early for school, this delay in sleep onset may lead to teen sleep deprivation and mood changes, and increase risk of obesity and perhaps under-performance in school, according to Figueiro.

"This is a double-barreled problem for teenagers and their parents," says Figueiro. "In addition to the exposure to more evening daylight, many teens also contend with not getting enough morning light to stimulate the body's biological system, also delaying teens' bedtimes."

The new findings detailing the impact of early evening light in spring on melatonin onset and sleep times have just been published in Chronobiology International by Figueiro and LRC Director Mark Rea, Ph.D. The study found that 16 eighth-grade students from Algonquin Middle School in upstate New York experienced a delay in melatonin onset by an average of 20 minutes measured in one day in spring relative to one day in winter. Melatonin levels normally start rising two to three hours prior to a person falling asleep. The students also kept sleep logs as part of the study, which collectively showed a 16-minute average delay in reported sleep onset and a 15-minute average reduction in reported sleep duration measured in one day in spring relative to one day in winter.

Setting the Body's Clock

Patterns of light and dark are the main cues for synchronizing our internal biological clock with the 24-hour solar day. Daylight is rich in short-wavelength (blue) light, which maximally stimulates our biological clock. This internal clock is responsible for regulating the timing of our sleep and other daily biological cycles, called circadian rhythms.

The results of the Algonquin Middle School study demonstrated that it was the extended daylight hours due to the seasonal change, not evening electric lighting after dark in the home, that had the biggest impact on delayed sleeping patterns. According to Figueiro, these results underscore the importance of measuring the 24-hour circadian light and dark patterns in order to draw valid inferences from field studies of this kind.

"This latest study supplements previous work and supports the general hypothesis that the entire 24-hour pattern of light/dark exposure influences synchronization of the body's circadian clock with the solar day and thus influences teenagers' sleep/wake cycles," explains Figueiro. "As a general rule, teenagers should increase morning daylight exposure year round and decrease evening daylight exposure in the spring to help ensure they will get sufficient sleep before going to school."

Measuring "Circadian Light"

In the study, the Algonquin Middle School students were exposed to significantly more "circadian light" in the early evening during spring than in winter, resulting in both delayed melatonin onset and shorter self-reported sleep durations. Each subject wore a Daysimeter, a small, head-mounted device developed by the LRC to measure an individual's exposure to daily "circadian light," as well as rest and activity patterns. The definition of circadian light is based upon the potential for light to suppress melatonin synthesis at night, as opposed to measuring light in terms of how it stimulates the visual system.

This study, sponsored by the U.S. Green Building Council (USGBC) and, in part, by a grant from a Trans-National Institutes of Health Genes, Environment and Health Initiative (NIH-GEI), is the first to relate field measurements of circadian light exposures to a well-established circadian marker (the rise in evening melatonin levels) during two seasons of the year.

In a previous field study, also funded by USGBC and NIH-GEI and published in Neuroendocrinology Letters, Figueiro and Rea examined the impact of morning light on teen sleep habits and found that removing short-wavelength (blue) morning light resulted in a 30-minute delay in sleep onset by the end of a five-day period.

About the Lighting Research Center

The Lighting Research Center (LRC) is part of Rensselaer Polytechnic Institute of Troy, N.Y., and is the leading university-based research center devoted to lighting. The LRC offers the world's premier graduate education in lighting, including one- and two-year master's programs and a Ph.D. program. Since 1988 the LRC has built an international reputation as a reliable source for objective information about lighting technologies, applications, and products. The LRC also provides training programs for government agencies, utilities, contractors, lighting designers, and other lighting professionals. Visit www.lrc.rpi.edu.

Link to paper published in Chronobiology International: http://informahealthcare.com/eprint/eWR6wecNupmX9ZnhNRRT/full?tokenKey=

Mary Cimo | EurekAlert!
Further information:
http://www.rpi.edu

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>