Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Exposure to early evening sunlight in spring creates teenage night owls

27.07.2010
Field study demonstrates that extended daylight hours influence teens' sleeping patterns

In the spring, later sunset and extended daylight exposure delay bedtimes in teenagers, according to researchers at Rensselaer Polytechnic Institute's Lighting Research Center (LRC).

"Biologically, this increased exposure to early evening light in the spring delays the onset of nocturnal melatonin, a hormone that indicates to the body when it's nighttime," explains Mariana Figueiro, Ph.D., associate professor. "This extended exposure adds to the difficulties teens have falling asleep at a reasonable hour."

Over time when coupled with having to rise early for school, this delay in sleep onset may lead to teen sleep deprivation and mood changes, and increase risk of obesity and perhaps under-performance in school, according to Figueiro.

"This is a double-barreled problem for teenagers and their parents," says Figueiro. "In addition to the exposure to more evening daylight, many teens also contend with not getting enough morning light to stimulate the body's biological system, also delaying teens' bedtimes."

The new findings detailing the impact of early evening light in spring on melatonin onset and sleep times have just been published in Chronobiology International by Figueiro and LRC Director Mark Rea, Ph.D. The study found that 16 eighth-grade students from Algonquin Middle School in upstate New York experienced a delay in melatonin onset by an average of 20 minutes measured in one day in spring relative to one day in winter. Melatonin levels normally start rising two to three hours prior to a person falling asleep. The students also kept sleep logs as part of the study, which collectively showed a 16-minute average delay in reported sleep onset and a 15-minute average reduction in reported sleep duration measured in one day in spring relative to one day in winter.

Setting the Body's Clock

Patterns of light and dark are the main cues for synchronizing our internal biological clock with the 24-hour solar day. Daylight is rich in short-wavelength (blue) light, which maximally stimulates our biological clock. This internal clock is responsible for regulating the timing of our sleep and other daily biological cycles, called circadian rhythms.

The results of the Algonquin Middle School study demonstrated that it was the extended daylight hours due to the seasonal change, not evening electric lighting after dark in the home, that had the biggest impact on delayed sleeping patterns. According to Figueiro, these results underscore the importance of measuring the 24-hour circadian light and dark patterns in order to draw valid inferences from field studies of this kind.

"This latest study supplements previous work and supports the general hypothesis that the entire 24-hour pattern of light/dark exposure influences synchronization of the body's circadian clock with the solar day and thus influences teenagers' sleep/wake cycles," explains Figueiro. "As a general rule, teenagers should increase morning daylight exposure year round and decrease evening daylight exposure in the spring to help ensure they will get sufficient sleep before going to school."

Measuring "Circadian Light"

In the study, the Algonquin Middle School students were exposed to significantly more "circadian light" in the early evening during spring than in winter, resulting in both delayed melatonin onset and shorter self-reported sleep durations. Each subject wore a Daysimeter, a small, head-mounted device developed by the LRC to measure an individual's exposure to daily "circadian light," as well as rest and activity patterns. The definition of circadian light is based upon the potential for light to suppress melatonin synthesis at night, as opposed to measuring light in terms of how it stimulates the visual system.

This study, sponsored by the U.S. Green Building Council (USGBC) and, in part, by a grant from a Trans-National Institutes of Health Genes, Environment and Health Initiative (NIH-GEI), is the first to relate field measurements of circadian light exposures to a well-established circadian marker (the rise in evening melatonin levels) during two seasons of the year.

In a previous field study, also funded by USGBC and NIH-GEI and published in Neuroendocrinology Letters, Figueiro and Rea examined the impact of morning light on teen sleep habits and found that removing short-wavelength (blue) morning light resulted in a 30-minute delay in sleep onset by the end of a five-day period.

About the Lighting Research Center

The Lighting Research Center (LRC) is part of Rensselaer Polytechnic Institute of Troy, N.Y., and is the leading university-based research center devoted to lighting. The LRC offers the world's premier graduate education in lighting, including one- and two-year master's programs and a Ph.D. program. Since 1988 the LRC has built an international reputation as a reliable source for objective information about lighting technologies, applications, and products. The LRC also provides training programs for government agencies, utilities, contractors, lighting designers, and other lighting professionals. Visit www.lrc.rpi.edu.

Link to paper published in Chronobiology International: http://informahealthcare.com/eprint/eWR6wecNupmX9ZnhNRRT/full?tokenKey=

Mary Cimo | EurekAlert!
Further information:
http://www.rpi.edu

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>