Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Exposure to more diverse objects speeds word learning in tots

07.12.2010
Two toddlers are learning the word "cup." One sees three nearly identical cups; the other sees a tea cup, a sippy cup and a Styrofoam cup. Chances are, the second child will have a better sense of what a cup is and -- according to a new University of Iowa study -- may even have an advantage as he learns new words.

Published this month in Psychological Science, a journal of the Association for Psychological Science, the research showed that 18-month-olds who played with a broader array of objects named by shape – for example, groups of bowls or buckets that were less similar in material, size or features – learned new words twice as fast as those who played with more similar objects.

Outside the lab, one month after the training, tots who had been exposed to the diverse objects were learning an average of nearly 10 new words per week. Kids in the other group were picking up four a week – typical for children that age without any special training. Researchers aren't sure how long the accelerated learning continued for the variable group, but they can explain why it may have occurred.

All of the children given extra training with words figured out that shape was the most important distinguishing feature when learning to name solid objects. This attention to shape, called a "shape bias," is not typically seen until later in development. However, the researchers believe that kids exposed to more variety took the knowledge a step further, also learning when not to attend to shape. Tots in the variable group learned, for example, to focus on material rather than shape when hearing names for non-solid substances.

"Knowing where to direct their attention helps them learn words more quickly overall," said lead author Lynn Perry (left), a UI doctoral student in psychology. "The shape bias enhances vocabulary development because most of the words young kids learn early on are names of categories organized by similarity in shape. And, developing the ability to disregard shape for non-solids helps them learn words like pudding, Jell-O or milk."

Perry conducted the study with psychologist Larissa Samuelson (right) of the UI College of Liberal Arts and Sciences, and UI alumni Lisa Malloy and Ryan Schiffer. The study involved 16 children who knew about 17 object names when the study began. Half of the kids were taught names of objects by playing with groups of toys that were nearly identical; the other half used toys that differed significantly – for example, a small, cloth, jack-o-lantern bucket; a trash bucket with no handle; and a traditional plastic bucket.

When tested on unfamiliar objects that fit into the categories they'd been taught – such as a bucket they'd never seen before – kids in the variable group performed better. This showed an ability to generalize the knowledge.

"We believe the variable training gave them a better idea of what a bucket was. They discovered that the buckets were all alike in general shape, but that having a handle or being a particular texture didn't matter," Perry said. "In contrast, the children exposed to a tightly organized group of objects developed such strict criteria for what constitutes a bucket that they were reluctant to call it a bucket if it was different from what they'd learned."

In additional tests, researchers looked at whether the tots learned names of new objects by focusing on substance or shape. The variable group tuned into shape for solids but material for non-solids, a distinction children aren't typically capable of making until the age of 3, when their vocabulary reaches 150 nouns.

Further investigation is necessary to pinpoint exactly why the variable group had more success in this area, but the researchers say their study is the first to show that variability at the local level can help children learn something more global about the importance of particular object features for different categories of things.

"What children learn about one category sets the stage for their future learning," Samuelson said. "Similar exemplars help children learn specific names for specific objects. But variable exemplars teach them more about the whole category, which helps them learn names of other new things faster. That's why kids in the variable group learned more outside the lab – they learned more about naming in general, not just specific examples of the specific categories they'd seen in the lab."

The study was funded by a National Institute of Child Health and Human Development grant awarded to Samuelson. Samuelson and Perry are members of the UI Delta Center, which focuses on research in the fields of learning and development. To learn more about the center, visit http://www.uiowa.edu/delta-center/.

STORY SOURCE: University of Iowa News Services, 300 Plaza Centre One, Suite 371, Iowa City, Iowa 52242-2500

MEDIA CONTACTS: Lynn Perry, Department of Psychology, 319-353-1977, lynn-perry@uiowa.edu; Kelli Andresen, University News Services, 319-384-0044, kelli-andresen@uiowa.edu; Writer: Nicole Riehl

Jennifer Brown | EurekAlert!
Further information:
http://www.uiowa.edu

More articles from Studies and Analyses:

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

nachricht First form of therapy for childhood dementia CLN2 developed
25.04.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>