Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Exposure to more diverse objects speeds word learning in tots

07.12.2010
Two toddlers are learning the word "cup." One sees three nearly identical cups; the other sees a tea cup, a sippy cup and a Styrofoam cup. Chances are, the second child will have a better sense of what a cup is and -- according to a new University of Iowa study -- may even have an advantage as he learns new words.

Published this month in Psychological Science, a journal of the Association for Psychological Science, the research showed that 18-month-olds who played with a broader array of objects named by shape – for example, groups of bowls or buckets that were less similar in material, size or features – learned new words twice as fast as those who played with more similar objects.

Outside the lab, one month after the training, tots who had been exposed to the diverse objects were learning an average of nearly 10 new words per week. Kids in the other group were picking up four a week – typical for children that age without any special training. Researchers aren't sure how long the accelerated learning continued for the variable group, but they can explain why it may have occurred.

All of the children given extra training with words figured out that shape was the most important distinguishing feature when learning to name solid objects. This attention to shape, called a "shape bias," is not typically seen until later in development. However, the researchers believe that kids exposed to more variety took the knowledge a step further, also learning when not to attend to shape. Tots in the variable group learned, for example, to focus on material rather than shape when hearing names for non-solid substances.

"Knowing where to direct their attention helps them learn words more quickly overall," said lead author Lynn Perry (left), a UI doctoral student in psychology. "The shape bias enhances vocabulary development because most of the words young kids learn early on are names of categories organized by similarity in shape. And, developing the ability to disregard shape for non-solids helps them learn words like pudding, Jell-O or milk."

Perry conducted the study with psychologist Larissa Samuelson (right) of the UI College of Liberal Arts and Sciences, and UI alumni Lisa Malloy and Ryan Schiffer. The study involved 16 children who knew about 17 object names when the study began. Half of the kids were taught names of objects by playing with groups of toys that were nearly identical; the other half used toys that differed significantly – for example, a small, cloth, jack-o-lantern bucket; a trash bucket with no handle; and a traditional plastic bucket.

When tested on unfamiliar objects that fit into the categories they'd been taught – such as a bucket they'd never seen before – kids in the variable group performed better. This showed an ability to generalize the knowledge.

"We believe the variable training gave them a better idea of what a bucket was. They discovered that the buckets were all alike in general shape, but that having a handle or being a particular texture didn't matter," Perry said. "In contrast, the children exposed to a tightly organized group of objects developed such strict criteria for what constitutes a bucket that they were reluctant to call it a bucket if it was different from what they'd learned."

In additional tests, researchers looked at whether the tots learned names of new objects by focusing on substance or shape. The variable group tuned into shape for solids but material for non-solids, a distinction children aren't typically capable of making until the age of 3, when their vocabulary reaches 150 nouns.

Further investigation is necessary to pinpoint exactly why the variable group had more success in this area, but the researchers say their study is the first to show that variability at the local level can help children learn something more global about the importance of particular object features for different categories of things.

"What children learn about one category sets the stage for their future learning," Samuelson said. "Similar exemplars help children learn specific names for specific objects. But variable exemplars teach them more about the whole category, which helps them learn names of other new things faster. That's why kids in the variable group learned more outside the lab – they learned more about naming in general, not just specific examples of the specific categories they'd seen in the lab."

The study was funded by a National Institute of Child Health and Human Development grant awarded to Samuelson. Samuelson and Perry are members of the UI Delta Center, which focuses on research in the fields of learning and development. To learn more about the center, visit http://www.uiowa.edu/delta-center/.

STORY SOURCE: University of Iowa News Services, 300 Plaza Centre One, Suite 371, Iowa City, Iowa 52242-2500

MEDIA CONTACTS: Lynn Perry, Department of Psychology, 319-353-1977, lynn-perry@uiowa.edu; Kelli Andresen, University News Services, 319-384-0044, kelli-andresen@uiowa.edu; Writer: Nicole Riehl

Jennifer Brown | EurekAlert!
Further information:
http://www.uiowa.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>