Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Exposure to alkaline substances can result in damaged teeth

28.10.2009
It has long been known that acids can erode tooth enamel but a new Swedish study from the Sahlgrenska Academy at the University of Gothenburg, Sweden, shows that strong alkaline substances can damage teeth too - substances with high pH values can destroy parts of the organic content of the tooth, leaving the enamel more vulnerable.

The study was carried out at the Department of Occupational and Environmental Medicine at the Sahlgrenska Academy and published in the Journal of Dentistry.

"The study shows that exposure to alkaline substances can result in damaged teeth, but that the process is different to that caused by exposure to acidic drinks or acidic industrial vapours," says Fabian Taube, occupational hygienist and one of the researchers behind the study.

It was occupational injuries from reconditioning of cars that attracted the attention of the researchers. The common denominator was exposure to an alkaline degreaser that was sprayed onto various parts of the cars. The spray turned out to have a pH value of between 12 and 14, which is very alkaline.

"Exposure to this substance damaged the surface of the teeth resulting in "flaked" enamel," says Jörgen Norén, professor/senior dental officer at the Sahlgrenska Academy. "This type of damage markedly increases the risk of caries and other dental damage."

Alkaline degreasers are used in the food industry, among other things to clean professional kitchens, but are also common in car care industry and to remove vandalism painting.

"Occupational damage to teeth from exposure to alkaline substances is probably not as common as damage from acidic substances, but it becomes a problem when employers fail to inform employees of the risks or do not give them access to the right protective equipment," says Taube.

The study exposed extracted teeth to degreasers and other alkaline solutions. Enamel samples were then examined with a scanning electron microscope and analysed using various spectroscopic methods. The researchers found that organic material on the surface of the tooth dissolves rapidly. The results indicate that the organic components of the enamel are also affected, as the enamel becomes more porous.

"However, we were not able to show that alkaline substances change the composition of the minerals that constitute the main component of enamel," says Taube. "In that sense, it differs from the effects of exposure to acids."

The study was carried out with funding from the Swedish Council for Working Life and Social Research (FAS) and the Magnus Bergvall Foundation, among others.

TOOTH ENAMEL
Enamel, the body's hardest tissue, forms a layer over the teeth that is up to two millimetres thick. Just two per cent of the enamel is organic material, with the rest comprising various minerals and water. The organic component is made up of protein, lipids and citrate, whilst the inorganic component is made up of calcium hydroxylapatite and calcium fluorapatite.

For more information, please contact:

Journal: Journal of Dentistry
Title of article: Morphological and chemical characterization of tooth enamel exposed to alkaline agents.
Authors: Taube F, Ylmén R, Shchukarev A, Nietzsche S, Norén JG
PubMed ID: 19781592

Helena Aaberg | idw
Further information:
http://www.gu.se/

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>