Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Experimental and computational investigation of affinity and selectivity factors in CYP2D6 and CYP3A4 mediated metabolism

While computer simulations of how the body metabolises drugs save both time and money, the best results when developing new drugs come from combining such simulations with laboratory experiments, reveals a researcher from the University of Gothenburg.

“My research demonstrates the benefits of combining traditional laboratory experiments with computer-based calculation models to understand and explain how the body’s various enzymes interact with a drug when breaking it down,” says Britta Bonn from the University of Gothenburg’s Department of Chemistry. “It can really help when developing and designing molecules with the desired metabolic characteristics for a new drug.”

When developing new drugs, it is important to understand how they will be broken down in the body, and which products are formed during this process. This breakdown of foreign substances is known as metabolism, and can be viewed as the conversion of the drug to a non-toxic, water-soluble product that can easily leave the body, in urine for example.

Enzymes does the job

Drug metabolism is the work of catalysts known as enzymes, and generally takes place in the liver. If a drug is broken down too effectively, it may not have the desired effect, and toxic metabolic products may form. It is therefore important to study and understand how drugs are broken down.

Traditionally laboratory experiments have been used to study drug/enzyme interactions, for example in cell-based systems in test tubes (in vitro). Recent years have also brought major progress in computer-based models (in silico) and information on the enzymes’ 3D structures.

Combines in vitro and in silico

Britta Bonn has focused on two important enzymes from the CYP family, which are the most common drug-metabolising enzymes, both in vitro and in silico to understand how they interact with foreign substances.

“My studies aimed to find out things like how well a molecule binds to the enzymes, why a molecule binds better to one enzyme than another, and how quickly and where in the molecule metabolism occurs,” says Bonn. “If we know more, we can change the molecules to produce the characteristics we’re after for new drugs.”

The thesis Experimental and Computational Investigation of Affinity and Selectivity Factors in CYP2D6 and CYP3A4 Mediated Metabolism will be defended on 24 September 2010. The supervisors were professor Kristina Luthman, professor Collen Masimirembwa and Dr Ismael Zamora.

Download the thesis.:

For more information, please contact:
Britta Bonn,
Tel. +46 707 91 36 57
+46 707 91 36 57
Bibliographic data:
Title: Exploration of Catalytic Properties of CYP2D6 and CYP3A4 Through Metabolic Studies of
Levorphanol and Levallorphan.
Authors: Exploration of Catalytic Properties of CYP2D6 and CYP3A4 Through Metabolic Studies of
Levorphanol and Levallorphan. Bonn B., Masimirembwa C.M., and Castagnoli N. Drug Metabolism
and Disposition 2010, 38; 187-199.
Bonn B., Masimirembwa C.M., and Castagnoli N.
Journal: Drug Metabolism and Disposition 2010, 38; 187-199.

Helena Aaberg | idw
Further information:

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

Don't Give the Slightest Chance to Toxic Elements in Medicinal Products

23.03.2018 | Life Sciences

Sensitive grip

23.03.2018 | Materials Sciences

No compromises: Combining the benefits of 3D printing and casting

23.03.2018 | Process Engineering

Science & Research
Overview of more VideoLinks >>>