Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Experimental and computational investigation of affinity and selectivity factors in CYP2D6 and CYP3A4 mediated metabolism

04.10.2010
While computer simulations of how the body metabolises drugs save both time and money, the best results when developing new drugs come from combining such simulations with laboratory experiments, reveals a researcher from the University of Gothenburg.

“My research demonstrates the benefits of combining traditional laboratory experiments with computer-based calculation models to understand and explain how the body’s various enzymes interact with a drug when breaking it down,” says Britta Bonn from the University of Gothenburg’s Department of Chemistry. “It can really help when developing and designing molecules with the desired metabolic characteristics for a new drug.”

When developing new drugs, it is important to understand how they will be broken down in the body, and which products are formed during this process. This breakdown of foreign substances is known as metabolism, and can be viewed as the conversion of the drug to a non-toxic, water-soluble product that can easily leave the body, in urine for example.

Enzymes does the job

Drug metabolism is the work of catalysts known as enzymes, and generally takes place in the liver. If a drug is broken down too effectively, it may not have the desired effect, and toxic metabolic products may form. It is therefore important to study and understand how drugs are broken down.

Traditionally laboratory experiments have been used to study drug/enzyme interactions, for example in cell-based systems in test tubes (in vitro). Recent years have also brought major progress in computer-based models (in silico) and information on the enzymes’ 3D structures.

Combines in vitro and in silico

Britta Bonn has focused on two important enzymes from the CYP family, which are the most common drug-metabolising enzymes, both in vitro and in silico to understand how they interact with foreign substances.

“My studies aimed to find out things like how well a molecule binds to the enzymes, why a molecule binds better to one enzyme than another, and how quickly and where in the molecule metabolism occurs,” says Bonn. “If we know more, we can change the molecules to produce the characteristics we’re after for new drugs.”

The thesis Experimental and Computational Investigation of Affinity and Selectivity Factors in CYP2D6 and CYP3A4 Mediated Metabolism will be defended on 24 September 2010. The supervisors were professor Kristina Luthman, professor Collen Masimirembwa and Dr Ismael Zamora.

Download the thesis.: http://hdl.handle.net/2077/22586

For more information, please contact:
Britta Bonn,
Tel. +46 707 91 36 57
+46 707 91 36 57
kjelland@chem.gu.se
Bibliographic data:
Title: Exploration of Catalytic Properties of CYP2D6 and CYP3A4 Through Metabolic Studies of
Levorphanol and Levallorphan.
Authors: Exploration of Catalytic Properties of CYP2D6 and CYP3A4 Through Metabolic Studies of
Levorphanol and Levallorphan. Bonn B., Masimirembwa C.M., and Castagnoli N. Drug Metabolism
and Disposition 2010, 38; 187-199.
Bonn B., Masimirembwa C.M., and Castagnoli N.
Journal: Drug Metabolism and Disposition 2010, 38; 187-199.
Link: http://dmd.aspetjournals.org/content/38/1/187

Helena Aaberg | idw
Further information:
http://hdl.handle.net/2077/22586
http://dmd.aspetjournals.org/content/38/1/187

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>