Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Existing cropland could feed 4 billion more

02.08.2013
New University of Minnesota research shows reallocating croplands away from fuels and animal feed could boost food available for people by 70 percent without clearing more land

The world's croplands could feed 4 billion more people than they do now just by shifting from producing animal feed and biofuels to producing exclusively food for human consumption, according to new research from the Institute on the Environment at the University of Minnesota.

Even a smaller, partial shift from crop-intensive livestock such as feedlot beef to food animals such as chicken or pork could increase agricultural efficiency and provide food for millions, the study says.

"We essentially have uncovered an astoundingly abundant supply of food for a hungry world, hidden in plain sight in the farmlands we already cultivate," says graduate research assistant Emily Cassidy, lead author of the paper published in Environmental Research Letters. "Depending on the extent to which farmers and consumers are willing to change current practices, existing croplands could feed millions or even billions more people."

Demand for crops is expected to double by 2050 as population grows and increasing affluence boosts meat consumption. Meat takes a particularly big toll on food security because it takes up to 30 crop calories to produce a single calorie of meat. In addition, crops are increasingly being used for biofuels rather than food production. This study sought to quantify the benefit to food security that would accrue if some or all of the lands used to produce animal feed and fuel were reallocated to directly produce food for people.

To get at that question, Cassidy and colleagues first mapped the extent and productivity of 41 major crops between 1997 and 2003, adjusting numbers for imports and exports and calculating conversion efficiencies of animal feed using U.S. Department of Agriculture data. The researchers assumed humans need an average of 2,700 calories per day, and grazing lands and animals were not included in the study. Among the team's findings:

Only 12 percent of crop calories used for animal feed end up as calories consumed by humans.

Only 55 percent of crop calories worldwide directly nourish people.

Growing food exclusively for direct human consumption could boost available food calories up to 70 percent

U.S. agriculture alone could feed an additional 1 billion people by shifting crop calories to direct human consumption.

When calculated on the basis of protein rather than calories, results were similar. For instance, of all plant protein produced, 49 percent ends up in human diets.

In addition to the global findings, the research team looked at allocation of crop calories in four key countries: India, China, Brazil and the U.S. They found that while India allocates 90 percent of calories to feeding people, the other three allocate 58 percent, 45 percent, and 27 percent, respectively.

Noting the major cultural and economic dimensions involved, the researchers acknowledged that while a complete shift from animal to plant-based diets may not be feasible, even a partial shift would benefit food security. Quantifying the impact of various strategies, they found that a shift from crop-intensive beef to pork and chicken could feed an additional 357 million people, and a shift to nonmeat diets that include eggs and milk could feed an additional 815 million people.

The researchers emphasized that they are not making diet prescriptions or recommendations, just pointing out opportunities for gains in food production. They noted that humans can completely meet protein needs with plant-based diets, but that crop systems would need to shift (e.g., toward more production of protein-rich legumes) to meet human dietary needs.

"The good news is that we already produce enough calories to feed a few billion more people," Cassidy says. "As our planet gets more crowded or we experience disasters like droughts and pests, we can find ways of using existing croplands more efficiently."

To view a video explaining the research, please visit http://www.youtube.com/watch?v=LmBVbqEPeC0&feature=c4-overview&list=UUXzMUZRZtBE0GtF1RCOWMbw.

The University of Minnesota's Institute on the Environment seeks lasting solutions to Earth's biggest challenges through research, partnerships and leadership development. For more information, visit environment.umn.edu.

Mary Hoff | EurekAlert!
Further information:
http://www.umn.edu

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>