Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Exercise Increases Brain Growth Factor and Receptors, Prevents Stem Cell Drop Seen by Middle Age

19.11.2008
A new study confirms that exercise can reverse the age-related decline in the production of neural stem cells in the hippocampus of the mouse brain, and suggests that this happens because exercise restores a brain chemical which promotes the production and maturation of new stem cells.

Neural stem cells and progenitor cells differentiate into a variety of mature nerve cells which have different functions, a process called neurogenesis. There is evidence that when fewer new stem or progenitor cells are produced in the hippocampus, it can result in impairment of the learning and memory functions. The hippocampus plays an important role in memory and learning.

The study, “Exercise enhances the proliferation of neural stem cells and neurite growth and survival of neuronal progenitor cells in dentate gyrus of middle-aged mice,” was carried out by Chih-Wei Wu, Ya-Ting Chang, Lung Yu, Hsiun-ing Chen, Chauying J. Jen, Shih-Ying Wu, Chen-Peng Lo, Yu-Min Kuo, all of the National Cheng Kung University Medical College in Taiwan. The study appears in the November issue of the Journal of Applied Physiology, published by The American Physiological Society.

Rise in corticosterone or fall in nerve growth factor?

The researchers built on earlier studies that found that the production of stem cells in the area of the hippocampus known as the dentate gyrus drops off dramatically by the time mice are middle age and that exercise can slow that trend. In the current study, the researchers wanted to track these changes in mice over time, and find out why they happen.

One hypothesis the researchers investigated is that the age-related decline in neurogenesis is tied to a rise in corticosterone in middle age. Elevation of corticosterone has been associated with a drop in the production of new stem cells in the hippocampus.

The second hypothesis is that nerve growth factors -- which encourage new neural cell growth but which decrease with age -- account for the drop in neurogenesis. Specifically, the study looked at whether a decrease in brain-derived neurotrophic growth factor leads to a decline in new neural stem cells.

Variables studied

The researchers trained young (3 months), adult (7 months), early middle-aged (9 months), middle-aged (13 months) and old (24 months) mice to run a treadmill for up to one hour a day.

The study tracked neurogenesis, age, exercise, serum corticosterone levels and brain-derived neurotrophic factor (BDNF) and its receptor TrkB levels in the hippocampus. The researchers focused on middle age as a critical stage for the decline of neurogenesis in the mice.

As expected, the study found that neurogenesis drops off sharply in middle-aged mice. For example, the number of neural progenitor and mitotic (dividing) cells in the hippocampus of middle-aged mice was only 5% of that observed in the young mice.

The researchers also found that exercise significantly slows down the loss of new nerve cells in the middle-aged mice. They found that production of neural stem cells improved by approximately 200% compared to the middle-aged mice that did not exercise. In addition, the survival of new nerve cells increased by 170% and growth by 190% compared to the sedentary middle-aged mice. Exercise also significantly enhanced stem cell production and maturation in the young mice. In fact, exercise produced a stronger effect in younger mice compared to the older mice.

How does this happen?

Based on these results, it appears that nerve growth factor has more to do with these findings than the corticosterone:

• The middle-aged exercisers had more brain-derived neurotrophic factor and its receptor, TrkB, compared to the middle-aged mice that did not exercise. This suggests that exercise promotes the production of brain-derived neurotrophic factor which, in turn, promotes differentiation and survival of new brain cells in the hippocampus.

• Exercise did not change the basal level of serum corticosterone in middle-aged mice. This suggests that the reduction of neurogenesis during aging is not due to the drop in corticosterone levels.

NOTE TO EDITORS: To interview Dr. Kuo, please contact Christine Guilfoy at (301) 634-7253 or at cguilfoy@the-aps.org. Because of the time difference between the U.S. and Taiwan, e-mail interviews may work best for reporters in the U.S. and Canada.

Funding: National Science Council of Taiwan

Physiology is the study of how molecules, cells, tissues and organs
function to create health or disease. The American Physiological Society
(www.The-APS.org/press) has been an integral part of this
discovery process since it was established in 1887.

Christine Guilfoy | Newswise Science News
Further information:
http://www.the-aps.org

More articles from Studies and Analyses:

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

nachricht Urbanization to convert 300,000 km2 of prime croplands
27.12.2016 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>